Vascular effects of insulin

Metabolism ◽  
2021 ◽  
pp. 154891
Author(s):  
Andrea Natali ◽  
Lorenzo Nesti
Keyword(s):  
Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


2016 ◽  
Vol 16 (2) ◽  
pp. 90-97 ◽  
Author(s):  
Urska Kamensek ◽  
Marie-Pierre Rols ◽  
Maja Cemazar ◽  
Muriel Golzio
Keyword(s):  

1996 ◽  
Vol 76 ◽  
pp. 38-39
Author(s):  
Eric Le Pelley ◽  
Pierre Corbi ◽  
Thierry Chataigneau ◽  
Robert Tricoche ◽  
Jacques Fusciardi

2008 ◽  
Vol 295 (5) ◽  
pp. R1486-R1493 ◽  
Author(s):  
Tim Lahm ◽  
Paul R. Crisostomo ◽  
Troy A. Markel ◽  
Meijing Wang ◽  
Yue Wang ◽  
...  

Both endogenous and exogenous estrogen decrease pulmonary artery (PA) vasoconstriction. Whether these effects are mediated via estrogen receptor (ER)-α or ER-β, and whether the contribution of ERs is stimulus-dependent, remains unknown. We hypothesized that administration of the selective ER-α agonist propylpyrazole triol (PPT) and/or the selective ER-β agonist diarylpropiolnitrile (DPN) rapidly decreases PA vasoconstriction induced by pharmacologic and hypoxic stimuli via a nitric oxide (NO)-dependent mechanism. PA rings ( n = 3–10/group) from adult male Sprague-Dawley rats were suspended in physiologic organ baths. Force displacement was measured. Vasoconstrictor responses to phenylephrine (10−8M − 10−5M) and hypoxia (Po2 35–45 mmHg) were determined. Endothelium-dependent and -independent vasorelaxation were measured by generating dose-response curves to acetylcholine (10−8M − 10−4M) and sodium nitroprusside (10−9M − 10−5M). PPT or DPN (10−9M − 5 × 10−5M) were added to the organ bath in the presence and absence of the NO-synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) (10−4M). Selective ER-α activation (PPT, 5 × 10−5M) rapidly (<20 min) decreased phenylephrine-induced vasoconstriction. This effect, as well as PPT's effects on endothelium-dependent vasorelaxation, were neutralized by l-NAME. In contrast, selective ER-β activation (DPN, 5 × 10−5M) rapidly decreased phase II of hypoxic pulmonary vasoconstriction (HPV). l-NAME eliminated this phenomenon. Lower PPT or DPN concentrations were less effective. We conclude that both ER-α and ER-β decrease PA vasoconstriction. The immediate onset of effect suggests a nongenomic mechanism. The contribution of specific ERs appears to be stimulus specific, with ER-α primarily modulating phenylephrine-induced vasoconstriction, and ER-β inhibiting HPV. NO inhibition eliminates these effects, suggesting a central role for NO in mediating the pulmonary vascular effects of both ER-α and ER-β.


2006 ◽  
Vol 290 (1) ◽  
pp. E54-E59 ◽  
Author(s):  
Lucilla D. Monti ◽  
Emanuela Setola ◽  
Gabriele Fragasso ◽  
Riccardo P. Camisasca ◽  
Pietro Lucotti ◽  
...  

The aim of the present study was to evaluate the effect of prolonged inhibition of β-oxidation on glucose and lipid muscle forearm metabolism and cGMP and endothelin-1 forearm release in patients with type 2 diabetes mellitus and ischemic cardiomyopathy. Fifteen patients were randomly allocated in a double-blind cross-over parallel study with trimetazidine (20 mg tid) or placebo lasting 15 days. At the end of each period, all patients underwent euglycemic hyperinsulinemic clamps with forearm indirect calorimetry and endothelial balance of vasodilator and vasoconstricor factors. Compared with placebo, trimetazidine induced 1) an increase in insulin-induced forearm glucose uptake and glucose oxidation accompained by a reduction in forearm lipid oxidation and citrate release and 2) a decrease of endothelin-1 release paralleled by a significant increase in forearm cGMP release. Forearm glucose oxidation significantly correlated with cGMP release ( r = 0.37, P < 0.04), whereas forearm lipid oxidation positively correlated with endothelin-1 release ( r = 0.40, P < 0.03). In conclusion, for the first time, we demonstrated that insulin-induced forearm glucose oxidation and forearm cGMP release were increased whereas forearm endothelin-1 release was decreased during trimetazidine treatment. Muscle's metabolic and vascular effects of trimetazidine add new interest in the use of trimetazidine in type 2 diabetic patients with cardiovascular disease.


2007 ◽  
Vol 17 (12) ◽  
pp. 1473-1477 ◽  
Author(s):  
Marta Miguel ◽  
María A. Manso ◽  
Rosina López-Fandiño ◽  
María J. Alonso ◽  
Mercedes Salaices

Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 291
Author(s):  
Rossalin Yonpiam ◽  
Jair Gobbet ◽  
Ashok Jadhav ◽  
Kaushik Desai ◽  
Barry Blakley ◽  
...  

Ergotism is a common and increasing problem in Saskatchewan’s livestock. Chronic exposure to low concentrations of ergot alkaloids is known to cause severe arterial vasoconstriction and gangrene through the activation of adrenergic and serotonergic receptors on vascular smooth muscles. The acute vascular effects of a single oral dose with high-level exposure to ergot alkaloids remain unknown and are examined in this study. This study had two main objectives; the first was to evaluate the role of α1-adrenergic receptors in mediating the acute vasocontractile response after single-dose exposure in sheep. The second was to examine whether terazosin (TE) could abolish the vascular contractile effects of ergot alkaloids. Twelve adult female sheep were randomly placed into control and exposure groups (n = 6/group). Ergot sclerotia were collected and finely ground. The concentrations of six ergot alkaloids (ergocornine, ergocristine, ergocryptine, ergometrine, ergosine, and ergotamine) were determined using HPLC/MS at Prairie Diagnostic Services Inc., (Saskatoon, SK, Canada). Each ewe within the treatment group received a single oral treatment of ground ergot sclerotia at a dose of 600 µg/kg BW (total ergot) while each ewe in the control group received water. Animals were euthanized 12 h after the treatment, and the pedal artery (dorsal metatarsal III artery) from the left hind limb from each animal was carefully dissected and mounted in an isolated tissue bath. The vascular contractile response to phenylephrine (PE) (α1-adrenergic agonist) was compared between the two groups before and after TE (α1-adrenergic antagonist) treatment. Acute exposure to ergot alkaloids resulted in a 38% increase in vascular sensitivity to PE compared to control (Ctl EC50 = 1.74 × 10−6 M; Exp EC50 = 1.079 × 10−6 M, p = 0.046). TE treatment resulted in a significant dose-dependent increase in EC50 in both exposure and control groups (p < 0.05 for all treatments). Surprisingly, TE effect was significantly more pronounced in the ergot exposed group compared to the control group at two of the three concentrations of TE (TE 30 nM, p = 0.36; TE 100 nM, p < 0.001; TE 300 nM, p < 0.001). Similar to chronic exposure, acute exposure to ergot alkaloids results in increased vascular sensitivity to PE. TE is a more potent dose-dependent antagonist for the PE contractile response in sheep exposed to ergot compared to the control group. This study may indicate that the dry gangrene seen in sheep, and likely other species, might be related to the activation of α1-adrenergic receptor. This effect may be reversed using TE, especially at early stages of the disease before cell death occurs. This study may also indicate that acute-single dose exposure scenario may be useful in the study of vascular effects of ergot alkaloids.


Planta Medica ◽  
2020 ◽  
Vol 86 (09) ◽  
pp. 631-642
Author(s):  
Watcharee Waratchareeyakul ◽  
Fabio Fusi ◽  
Miriam Durante ◽  
Amer Ahmed ◽  
Walter Knirsch ◽  
...  

AbstractFive compounds, 3,4′-dihydroxy-3′,5,5′-trimethoxydihydrostilbene, 1; 3,4′-ihydroxy-3′,5′-dimethoxydihydrostilbene, 2; 3,4′-dihydroxy-5,5′-dimethoxydihydrostilbene, 3; 9,10-dihydro-2,7-dihydroxy-4,6-dimethoxyphenanthrene, 4; and the previously unreported 1,2,6,7-tetrahydroxy-4-methoxyphenanthrene, 5 were isolated from the South American orchid, Brasiliorchis porphyrostele. An in-depth analysis of their vascular effects was performed on in vitro rat aorta rings and tail main artery myocytes. Compounds 1 – 4 were shown to possess vasorelaxant activity on rings pre-contracted by the α 1 receptor agonist phenylephrine, the CaV1.2 stimulator (S)-(−)-Bay K 8644, or depolarized with high K+ concentrations. However, compound 5 was active solely on rings stimulated by 25 mM but not 60 mM K+. The spasmolytic activity of compounds 1 and 4 was significantly affected by the presence of an intact endothelium. The KATP channel blocker glibenclamide and the KV channel blocker 4-aminopyridine significantly antagonized the vasorelaxant activity of compounds 4 and 1, respectively. In patch-clamp experiments, compounds 1 – 4 inhibited Ba2+ current through CaV1.2 channels in a concentration-dependent manner, whereas neither compound 4 nor compound 1 affected K+ currents through KATP and KV channels, respectively. The present in vitro, comprehensive study demonstrates that Brasiliorchis porphyrostele may represent a source of vasoactive agents potentially useful for the development of novel antihypertensive agents that has now to be validated in vivo in animal models of hypertension.


1963 ◽  
Vol 204 (6) ◽  
pp. 987-990 ◽  
Author(s):  
J. Albrecht Koehler ◽  
Theofilos J. Tsagaris ◽  
Hiroshi Kuida ◽  
Hans H. Hecht

The demonstration in a previous study of the effectiveness of an antihistaminic drug in blocking some of the systemic but not the pulmonary vascular effects of endotoxin led to the study of the effect of an inhibitor of serotonin synthesis, alpha-methyl 3,4-dihydroxyphenylalanine (α-m dopa). One group of seven dogs was pretreated with a single dose of 250 mg, and a second group of six animals with three doses of 250 mg, each given at 10-min intervals. Results in these two groups were compared with those in six control animals. Purified E. coli endotoxin, 1 mg/kg, was administered intravenously in all 19 experiments. Intravenous administration of α-m dopa alone had no effect on measured physiologic parameters. Compared with the endotoxin response in control animals, pretreatment with either dose level appeared to have no effect on the magnitude or duration of systemic arterial hypotension, portal venous hypertension, or drop in cardiac output. However, pretreatment with 250-mg and 750-mg doses was associated with significant reduction and abolition, respectively, of pulmonary arterial hypertension. The results are consistent with the interpretation that the pulmonary vasoconstrictive response to endotoxin is mediated through the release of serotonin and that α-m dopa blocks this response by interfering with the synthesis of this intermediary.


Sign in / Sign up

Export Citation Format

Share Document