scholarly journals Machine Learning Performance Validation and Training Using a ‘Perfect’ Expert System

MethodsX ◽  
2021 ◽  
pp. 101477
Author(s):  
Jeremy Straub
2020 ◽  
Vol 125 (2) ◽  
pp. 1197-1212
Author(s):  
Yeow Chong Goh ◽  
Xin Qing Cai ◽  
Walter Theseira ◽  
Giovanni Ko ◽  
Khiam Aik Khor

AbstractWe study whether humans or machine learning (ML) classification models are better at classifying scientific research abstracts according to a fixed set of discipline groups. We recruit both undergraduate and postgraduate assistants for this task in separate stages, and compare their performance against the support vectors machine ML algorithm at classifying European Research Council Starting Grant project abstracts to their actual evaluation panels, which are organised by discipline groups. On average, ML is more accurate than human classifiers, across a variety of training and test datasets, and across evaluation panels. ML classifiers trained on different training sets are also more reliable than human classifiers, meaning that different ML classifiers are more consistent in assigning the same classifications to any given abstract, compared to different human classifiers. While the top five percentile of human classifiers can outperform ML in limited cases, selection and training of such classifiers is likely costly and difficult compared to training ML models. Our results suggest ML models are a cost effective and highly accurate method for addressing problems in comparative bibliometric analysis, such as harmonising the discipline classifications of research from different funding agencies or countries.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


2021 ◽  
Author(s):  
Muhammad Sajid

Abstract Machine learning is proving its successes in all fields of life including medical, automotive, planning, engineering, etc. In the world of geoscience, ML showed impressive results in seismic fault interpretation, advance seismic attributes analysis, facies classification, and geobodies extraction such as channels, carbonates, and salt, etc. One of the challenges faced in geoscience is the availability of label data which is one of the most time-consuming requirements in supervised deep learning. In this paper, an advanced learning approach is proposed for geoscience where the machine observes the seismic interpretation activities and learns simultaneously as the interpretation progresses. Initial testing showed that through the proposed method along with transfer learning, machine learning performance is highly effective, and the machine accurately predicts features requiring minor post prediction filtering to be accepted as the optimal interpretation.


2017 ◽  
Vol 1 (3) ◽  
pp. 257-274 ◽  
Author(s):  
William Jones ◽  
Kaur Alasoo ◽  
Dmytro Fishman ◽  
Leopold Parts

Deep learning is the trendiest tool in a computational biologist's toolbox. This exciting class of methods, based on artificial neural networks, quickly became popular due to its competitive performance in prediction problems. In pioneering early work, applying simple network architectures to abundant data already provided gains over traditional counterparts in functional genomics, image analysis, and medical diagnostics. Now, ideas for constructing and training networks and even off-the-shelf models have been adapted from the rapidly developing machine learning subfield to improve performance in a range of computational biology tasks. Here, we review some of these advances in the last 2 years.


Sign in / Sign up

Export Citation Format

Share Document