A simple, rapid, green and non-destructive 19F time-domain NMR method for directly fluorine determination in powder of mineral supplements for cattle

2020 ◽  
Vol 153 ◽  
pp. 104416
Author(s):  
Diego Victor Babos ◽  
Rodrigo Henrique dos Santos Garcia ◽  
Luiz Alberto Colnago ◽  
Edenir Rodrigues Pereira-Filho
2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
Teoh King Long ◽  
Ko Yin Fern

Abstract In time domain reflectometry (TDR), the main emphasis lies on the reflected waveform. Poor probing contact is one of the common problems in getting an accurate waveform. TDR probe normalization is essential before measuring any TDR waveforms. The advantages of normalization include removal of test setup errors in the original test pulse and the establishment of a measurement reference plane. This article presents two case histories. The first case is about a Plastic Ball Grid Array package consisting of 352 solder balls where the open failure mode was encountered at various terminals after reliability assessment. In the second, a three-digit display LED suspected of an electrical short failure was analyzed using TDR as a fault isolation tool. TDR has been successfully used to perform non-destructive fault isolation in assisting the routine failure analysis of open and short failure. It is shown to be accurate and reduces the time needed to identify fault locations.


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Meng Yeow Tay ◽  
Wen Qiu ◽  
J. Alton ◽  
...  

Abstract Electro-optical terahertz pulse reflectometry (EOTPR) was introduced last year to isolate faults in advanced IC packages. The EOTPR system provides 10μm accuracy that can be used to non-destructively localize a package-level failure. In this paper, an EOTPR system is used for non-destructive fault isolation and identification for both 2D and 2.5D with TSV structure of flip-chip packages. The experimental results demonstrate higher accuracy of the EOTPR system in determining the distance to defect compared to the traditional time-domain reflectometry (TDR) systems.


Author(s):  
Longhai Liu ◽  
Guoqiang He ◽  
Liang Wu ◽  
Chenglong Zheng ◽  
Silei Wang ◽  
...  

2016 ◽  
Vol 32 (3) ◽  
pp. 286-300 ◽  
Author(s):  
M. K. Smail ◽  
H. R. E. H. Bouchekara ◽  
L. Pichon ◽  
H. Boudjefdjouf ◽  
A. Amloune ◽  
...  

1999 ◽  
Vol 5 (6) ◽  
pp. 609-618
Author(s):  
M. Stacheder ◽  
G. Grassegger ◽  
F. Grüner

Abstract A new commercially available dielectric technique for the non-destructive determination of moisture in building materials based on the principle of 'time-domain reflectometry' (TDR) is presented. TDR measurements on samples of sandstone, brick, concrete and floor cover matched very well with results of conventional moisture measuring methods such as oven-drying or calciumcarbide-technique. The new method showed only a low influence of salt content or surface moisture of the material on the results.


Sign in / Sign up

Export Citation Format

Share Document