Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment

2020 ◽  
Vol 305 ◽  
pp. 110327 ◽  
Author(s):  
Tao Yin ◽  
Xuan Meng ◽  
Linpeng Jin ◽  
Chao Yang ◽  
Naiwang Liu ◽  
...  
Keyword(s):  
Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.


2013 ◽  
Vol 39 (12) ◽  
pp. 2253
Author(s):  
Qing-Jiu YAN ◽  
Shi-Ping HUO ◽  
Fang-Kui ZHANG ◽  
Xing-Duan ZHANG ◽  
Jian ZHANG ◽  
...  

2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


2020 ◽  
Vol 10 (1-2) ◽  
pp. 58-72
Author(s):  
D. A. Sladkovskiy ◽  
K. V. Semikin ◽  
A. V. Utemov ◽  
S. P. Fedorov ◽  
E. V. Sladkovskaya ◽  
...  

1987 ◽  
Vol 52 (7) ◽  
pp. 1701-1707 ◽  
Author(s):  
Miloslav Křivánek ◽  
Nguyen Thiet Dung ◽  
Pavel Jírů

The catalytic activity of Na, H-Y zeolite samples with a varying Si/Al ratio (2·5 to 20) in the transformation of methanol was determined. The amounts of formed individual aliphatic hydrocarbons as function of reaction time were correlated with the amount of Bronsted and Lewis centres on the catalysts. The effect of coke formation on the over-all course of the reaction has been demonstrated.


1999 ◽  
Vol 64 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Miroslav Michvocík ◽  
Dušan Mravec ◽  
Milan Hronec ◽  
Agáta Smiešková ◽  
Pavol Hudec

The influence of thermal stabilization of NH4-Y zeolite and modification of USY zeolites with solutions of hydrochloric acid on the cyclohexylation of naphthalene in the liquid phase was studied. Removal of the part of extra-framework aluminium from zeolite structure has a positive effect on both conversion of naphthalene and amount of dicyclohexylnaphthalenes formed. Modification of zeolites leads to an increase in conversion and selectivity of β-substitution in the naphthalene cyclohexylation.


2008 ◽  
Vol 73 (8-9) ◽  
pp. 1061-1088
Author(s):  
Sule Rabiu ◽  
Sulaiman Al-Khattaf

In this work three important aromatic transformations, namely: toluene disproportionation, toluene methylation and m-xylene isomerization, were investigated in a riser simulator which closely mimics the operation of commercial fluidized bed reactors. The transformations were studied over a ZSM-5 based catalyst with medium acidity of 0.23 mmol/g and a series of Y zeolites of acidities between 0.55 and 0.03 mmol/g. For pure toluene feed, it was observed that conversion over the ZSM-5 based catalyst and the weakly acidic Y zeolite (USY-1) was very low. However, with the highly acidic Y zeolite (H-Y), significant toluene conversion was observed with paring reaction more prominent than disproportionation. On the other hand, when toluene was alkylated with methanol, higher toluene conversions were achieved over both the ZSM-5 based and the weakly acidic USY-1 catalysts as compared to when pure toluene feed was used. In addition, p-xylene/o-xylene (P/O) ratios higher than the equilibrium values were obtained in the reaction product over both catalysts. Finally, for m-xylene isomerization it was found that m-xylene conversion increased initially as the acidity of the catalyst increased up to 0.1 mmol/g beyond which any further increase in acidity resulted in a slight decrease in the m-xylene conversion.


2021 ◽  
Vol 19 (1) ◽  
pp. 745-754
Author(s):  
Khoirina Dwi Nugrahaningtyas ◽  
Eddy Heraldy ◽  
Rachmadani ◽  
Yuniawan Hidayat ◽  
Indriana Kartini

Abstract The properties of three types of CoMo/USY catalysts with different synthesized methods have been studied. The sequential and co-impregnation methods followed by activation using calcination and reduction process have been conducted. The properties of the catalysts were examined using Fourier-transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD) with refinement, and surface area analyzer (SAA). The FTIR spectrum study revealed the enhanced intensity of its Bronsted acid site, and the XRD diffractogram pattern verified the composition of pure metals, oxides, and alloys in the catalyst. The SAA demonstrated the mesoporous features of the catalyst. Scanning electron microscopy showed an irregular particle morphology. Additional analysis using the transmission electron microscopy indicated that the metal has successfully impregnated without damaging the USY structure.


Sign in / Sign up

Export Citation Format

Share Document