A comparative study of thermal fatigue life of Eutectic Sn-Bi, Hybrid Sn-Bi/SAC and SAC solder alloy BGAs

2021 ◽  
Vol 119 ◽  
pp. 114065
Author(s):  
Chongyang Cai ◽  
Jiefeng Xu ◽  
Huayan Wang ◽  
S.B. Park
Author(s):  
Y. S. Chan ◽  
C. Yang ◽  
S. W. Ricky Lee

The present study evaluates the relative thermal fatigue life of tin-silver-copper (SnAgCu or SAC) lead-free and tin-lead (SnPb) solders with custom-made BGA assembly configurations generating various stress ranges under thermal cyclic loading. Although the SAC solder bears a lower creep strain rate compared with the SnPb solder in common thermal cycling conditions, it is found that there exits conditions at which the SnPb solder joint maintain a longer life than the SAC solder joint. The determination lies on the maximum normalized equivalent stress levels (σ/E) experienced by the two kinds of solder joint during the temperature cycles. Even under the same straining and thermal cycling condition, it is observed that the maximum σ/E induced in the two kinds of solder joint are normally different, as a result of their different rate of stress relaxation. The analysis shows that both the absolute and relative magnitude of σ/E experienced by the two kinds of solder joint affect the relative life. In general, the SAC solder joint sustain a longer life at low σ/E levels, while the SnPb solder joint outperform the SAC solder joint at high σ/E levels. There exists a critical σ/E level at which both solder joints acquire similar performance. However, this margin shifts with the relative magnitude of σ/E the two kinds of solder joint suffered. Having studied the variation of σ/E for the two kinds of solder joint under various loading conditions, this study uncovers the rationale for the difference in the relative thermal fatigue life of the two kinds of solder joint.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

2011 ◽  
Vol 201-203 ◽  
pp. 2476-2480
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The in-phase and out-of-phase thermal fatigue of aluminum alloy were experimentally studied. The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method (mainly J integral). The results of experiments and calculations showed that the life of out-of-phase fatigue was longer than that of in-phase fatigue within the same strain range. This is the same as the results of other materials such as medium and low carbon steel. On the other hand, the predicted life was consistent with experimental results. This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of aluminum alloy and the calculation method developed here is efficient. A parameter ΔW was proposed from energy aspect to characterize the capacity of crack propagation. The in-phase thermal fatigue life was the same as the out-of-phase thermal fatigue life for identical ΔW values.


Author(s):  
Tomohiro Takahashi ◽  
Qiang Yu ◽  
Masahiro Kobayashi

For power module, the reliability evaluation of thermal fatigue life by power cycling has been prioritized as an important concern. Since in power cycling produces there exists non-uniform temperature distribution in the power module, coupled thermal-structure analysis is required to evaluate thermal fatigue mechanism. The thermal expansion difference between a Si chip and a substrate causes thermal fatigue. In this study, thermal fatigue life of solder joints on power module was evaluated. The finite element method (FEM) was used to evaluate temperature distribution induced by joule heating. Higher temperature appears below the Al wire because the electric current flows through the bonding Al wire. Coupled thermal-structure analysis is also required to evaluate the inelastic strain distribution. The damage of each part of solder joint can be calculated from equivalent inelastic strain range and crack propagation was simulated by deleting damaged elements step by step. The initial cracks were caused below the bonding Al wire and propagated concentrically under power cycling. There is the difference from environmental thermal cycling where the crack initiated at the edge of solder layer. In addition, in order to accurately evaluate the thermal fatigue life, the factors affecting the thermal fatigue life of solder joint where verified using coupled electrical-thermal-structural analysis. Then, the relation between the thermal fatigue life of solder joint and each factor is clarified. The precision evaluation for the thermal fatigue life of power module is improved.


2016 ◽  
Vol 48 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Y. Q. Liu ◽  
Q. H. Shang ◽  
D. H. Zhang ◽  
Y. X. Wang ◽  
T. T. Sun

Sign in / Sign up

Export Citation Format

Share Document