Evaluation of fluorescent stains for visualizing extracellular DNA in biofilms

2014 ◽  
Vol 105 ◽  
pp. 102-104 ◽  
Author(s):  
Mira Okshevsky ◽  
Rikke Louise Meyer
2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Senna Staessens ◽  
Olivier François ◽  
Linda Desender ◽  
Peter Vanacker ◽  
Tom Dewaele ◽  
...  

Abstract Background Mechanical removal of a thrombus by thrombectomy can be quite challenging. For reasons that are not fully understood, some thrombi require multiple passes to achieve successful recanalization, whereas other thrombi are efficiently removed in a single pass. Since first pass success is associated with better clinical outcome, it is important to better understand the nature of thrombectomy resistant thrombi. The aim of this study was therefore to characterize the cellular and molecular composition of a thrombus that was very hard to retrieve via mechanical thrombectomy. Case presentation In a patient that was admitted with a right middle cerebral artery M1-occlusion, 11 attempts using various thrombectomy devices and techniques were required for removal of the thrombus. This peculiar case provided a rare opportunity to perform an in-depth histopathological study of a difficult to retrieve thrombus. Thrombus material was histologically analyzed using hematoxylin and eosin, Martius Scarlet Blue stain (red blood cells and fibrin), Feulgen stain (DNA), von Kossa stain (calcifications) and immunohistochemical analysis of von Willebrand factor, platelets, leukocytes and neutrophil extracellular traps. Histological analysis revealed abnormally high amounts of extracellular DNA, leukocytes, von Willebrand factor and calcifications. Extracellular DNA stained positive for markers of leukocytes and NETs, suggesting that a significant portion of DNA is derived from neutrophil extracellular traps. Conclusion In this unique case of a nearly thrombectomy-resistant stroke thrombus, our study showed an atypical composition compared to the common structural features found in ischemic stroke thrombi. The core of the retrieved thrombus consisted of extracellular DNA that colocalized with von Willebrand factor and microcalcifications. These results support the hypothesis that von Willebrand factor, neutrophil extracellular traps and microcalcifications contribute to mechanical thrombectomy resistance. Such information is important to identify novel targets in order to optimize technical treatment protocols and techniques to increase first pass success rates.


Sign in / Sign up

Export Citation Format

Share Document