Faculty Opinions recommendation of Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.

Author(s):  
Leo Eberl
2008 ◽  
Vol 4 (11) ◽  
pp. e1000213 ◽  
Author(s):  
Heidi Mulcahy ◽  
Laetitia Charron-Mazenod ◽  
Shawn Lewenza

2019 ◽  
Vol 70 (5) ◽  
pp. 1778-1783
Author(s):  
Andreea-Loredana Golli ◽  
Floarea Mimi Nitu ◽  
Maria Balasoiu ◽  
Marina Alina Lungu ◽  
Cristiana Cerasella Dragomirescu ◽  
...  

To determine the resistance pattern of bacterial pathogens involved in infections of the patients aged between 18-64 years, admitted in a ICU from a 1518-bed university-affiliated hospital. A retrospective study of bacterial pathogens was carried out on 351 patients aged between 18-64 years admitted to the ICU, from January to December 2017. In this study there were analysed 469 samples from 351 patients (18-64 years). A total of 566 bacterial isolates were obtained, of which 120 strains of Klebsiella spp. (35.39%%), followed by Nonfermenting Gram negative bacilli, other than Pseudomonas and Acinetobacter (NFB) (75- 22.12%), Acinetobacter spp. (53 - 15.63%), Pseudomonas aeruginosa and Proteus (51 - 15.04%), and Escherichia coli (49 - 14.45%). The most common isolates were from respiratory tract (394 isolates � 69.61%). High rates of MDR were found for Pseudomonas aeruginosa (64.70%), MRSA (62.65%) and Klebsiella spp. (53.33%), while almost all of the isolated NFB strains were MDR (97.33%). There was statistic difference between the drug resistance rate of Klebsiella and E. coli strains to ceftazidime and ceftriaxone (p[0.001), cefuroxime (p[0.01) and to cefepime (p[0.01). The study revealed an alarming pattern of antibiotic resistance in the majority of ICU isolates.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1620
Author(s):  
Victor Markus ◽  
Karina Golberg ◽  
Kerem Teralı ◽  
Nazmi Ozer ◽  
Esti Kramarsky-Winter ◽  
...  

Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein’s productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.


1999 ◽  
Vol 159 (10) ◽  
pp. 1127 ◽  
Author(s):  
Yehuda Carmeli ◽  
Nicolas Troillet ◽  
Adolf W. Karchmer ◽  
Matthew H. Samore

Sign in / Sign up

Export Citation Format

Share Document