scholarly journals A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary

2008 ◽  
Vol 125 (11-12) ◽  
pp. 1048-1058 ◽  
Author(s):  
Laura Cobreros ◽  
Ana Fernández-Miñán ◽  
Carlos M. Luque ◽  
Acaimo González-Reyes ◽  
María D. Martín-Bermudo
Development ◽  
2001 ◽  
Vol 128 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Y. Liu ◽  
D.J. Montell

Epithelial to mesenchymal transitions and cell migration are important features of embryonic development and tumor metastasis. We are employing a systematic genetic approach to study the border cells in the Drosophila ovary, as a simple model for these cellular behaviors. Previously we found that expression of the basic-region/leucine zipper transcription factor, C/EBP, is required for the border cells to initiate their migration. Here we report the identification of a second nuclear factor, named JING (which means ‘still’), that is required for initiation of border cell migration. The jing locus was identified in a screen for mutations that cause border cell migration defects in mosaic clones. The jing mutant phenotype resembles that of slbo mutations, which disrupt the Drosophila C/EBP gene, but is distinct from other classes of border cell migration mutants. Expression of a jing-lacZ reporter in border cells requires C/EBP. Moreover, expression of jing from a heat-inducible promoter rescues the border cell migration defects of hypomorphic slbo mutants. The JING protein is most closely related to a mouse protein, AEBP2, which was identified on the basis of its ability to bind a small regulatory sequence within the adipocyte AP2 gene to which mammalian C/EBP also binds. We propose that the need to coordinate cell differentiation with nutritional status may be the link between mammalian adipocytes and Drosophila border cells that led to the conservation of C/EBP and AEBP2.


2017 ◽  
Author(s):  
Yasmin Sallak ◽  
Alba Yurani Torres ◽  
Hongyan Yin ◽  
Denise Montell

AbstractThe tyrosine kinase Src is over-expressed in numerous human cancers and is associated with poor prognosis. While Src has been extensively studied, its contributions to collective cell migration in vivo remain incompletely understood. Here we show that Src42A, but not Src64, is required for the specification and migration of the border cells in the Drosophila ovary, a well-developed and genetically tractable in vivo cell migration model. We found active Src42A enriched at border cell/nurse cell interfaces, where E-cadherin is less abundant, and depleted from border cell/border cell and border cell/polar cell junctions where E-cadherin is more stable, whereas total Src42A protein co-localizes with E-cadherin. Over-expression of wild type Src42A mislocalized Src activity and prevented border cell migration. Constitutively active or kinase dead forms of Src42A also impeded border cells. These findings establish border cells as a model for investigating the mechanisms of action of Src in cooperative, collective, cell-on-cell migration in vivo.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67075 ◽  
Author(s):  
Jan-Michael Kugler ◽  
Ya-Wen Chen ◽  
Ruifen Weng ◽  
Stephen M. Cohen

Author(s):  
Jan-Michael Kugler ◽  
Ya-Wen Chen ◽  
Ruifen Weng ◽  
Stephen M. Cohen

2010 ◽  
Vol 4 (3) ◽  
pp. 391-395 ◽  
Author(s):  
Inna Djagaeva ◽  
Sergey Doronkin

Sign in / Sign up

Export Citation Format

Share Document