scholarly journals EMX2 activates slow myosin heavy chain 2 gene expression in embryonic muscle fibers

2017 ◽  
Vol 147 ◽  
pp. 8-16 ◽  
Author(s):  
Kristina Hatch ◽  
Amanda Pabon ◽  
Joseph X. DiMario
2009 ◽  
Vol 296 (1) ◽  
pp. C205-C214 ◽  
Author(s):  
O. Agbulut ◽  
A. Vignaud ◽  
C. Hourde ◽  
E. Mouisel ◽  
F. Fougerousse ◽  
...  

Innervation has been generally accepted to be a major factor involved in both triggering and maintaining the expression of slow myosin heavy chain (MHC-1) in skeletal muscle. However, previous findings from our laboratory have suggested that, in the mouse, this is not always the case ( 30 ). Based on these results, we hypothesized that neurotomy would not markedly reduced the expression of MHC-1 protein in the mouse soleus muscles. In addition, other cellular, biochemical, and functional parameters were also studied in these denervated soleus muscles to complete our study. Our results show that denervation reduced neither the relative amount of MHC-1 protein, nor the percentage of muscle fibers expressing MHC-1 protein ( P > 0.05). The fact that MHC-1 protein did not respond to muscle inactivity was confirmed in three different mouse strains (129/SV, C57BL/6, and CD1). In contrast, all of the other histological, biochemical, and functional muscle parameters were markedly altered by denervation. Cross-sectional area (CSA) of muscle fibers, maximal tetanic isometric force, maximal velocity of shortening, maximal power, and citrate synthase activity were all reduced in denervated muscles compared with innervated muscles ( P < 0.05). Contraction and one-half relaxation times of the twitch were also increased by denervation ( P < 0.05). Addition of tenotomy to denervation had no further effect on the relative expression of MHC-1 protein ( P > 0.05), despite a greater reduction in CSA and citrate synthase activity ( P < 0.05). In conclusion, a deficit in neural input leads to marked atrophy and reduction in performance in mouse soleus muscles. However, the maintenance of the relative expression of slow MHC protein is independent of neuromuscular activity in mice.


2001 ◽  
Vol 204 (12) ◽  
pp. 2097-2101 ◽  
Author(s):  
Pierre-Yves Rescan ◽  
Bertrand Collet ◽  
Cecile Ralliere ◽  
Chantal Cauty ◽  
Jean-Marie Delalande ◽  
...  

SUMMARY The axial muscle of most teleost species consists of a deep bulk of fast-contracting white fibres and a superficial strip of slow-contracting red fibres. To investigate the embryological development of fast and slow muscle in trout embryos, we carried out single and double in situ hybridisation with fast and slow myosin heavy chain (MyHC)-isoform-specific riboprobes. This showed that the slow-MyHC-positive cells originate in a region of the somite close to the notochord. As the somite matures in a rostrocaudal progression, the slow-MyHC-positive cells appear to migrate radially away from the notochord to the lateral surface of the myotome, where they form the superficial strip of slow muscle. Surprisingly, the expression pattern of the fast MyHC showed that the differentiation of fast muscle commences in the medial domain of the somite before the differentiation and migration of the slow muscle precursors. Later, as the differentiation of fast muscle progressively spreads from the inside to the outside of the myotome, slow-MyHC-expressing cells become visible medially. Our observations that the initial differentiation of fast muscle takes place in proximity to axial structures and occurs before the differentiation and migration of slow muscle progenitors are not in accord with the pattern of muscle formation in teleosts previously described in the zebrafish Danio rerio, which is often used as the model organism in fishes.


Neurology ◽  
1985 ◽  
Vol 35 (9) ◽  
pp. 1360-1360 ◽  
Author(s):  
D. Biral ◽  
E. Damiani ◽  
A. Margreth ◽  
E. Scarpini ◽  
G. Scarlato

Sign in / Sign up

Export Citation Format

Share Document