scholarly journals Minimal peptide length required to span the mitochondrial protein translocases in Trypanosoma brucei

Author(s):  
Christoph Wenger ◽  
André Schneider
2021 ◽  
Author(s):  
Uthman Okalang ◽  
Bar Mualem Bar-Ner ◽  
K. Shanmugha Rajan ◽  
Nehemya Friedman ◽  
Saurav Aryal ◽  
...  

ABSTRACTIn the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5’ exon derived from the spliced leader RNA (SL RNA). Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA binding protein TRF4, leading to the shut-off of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi-localized quiescin sulfhydryl oxidase (QSOX1). Most strikingly, silencing of Rhomboid-like 1(TIMRHOM1) involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structure of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments.


1988 ◽  
Vol 8 (11) ◽  
pp. 4625-4633
Author(s):  
A F Torri ◽  
S L Hajduk

We examined the expression of a nucleus-encoded mitochondrial protein, cytochrome c, during the life cycle of Trypanosoma brucei. The bloodstream forms of T. brucei, the long slender and short stumpy trypanosomes, have inactive mitochondria with no detectable cytochrome-mediated respiration. The insect form of T. brucei, the procyclic trypanosomes, has fully functional mitochondria. Cytochrome c is spectrally undetectable in the bloodstream forms of trypanosomes, but during differentiation to the procyclic form, spectrally detected holo-cytochrome c accumulates rapidly. We have purified T. brucei cytochrome c and raised antibodies that react to both holo- and apo-cytochrome c. In addition, we isolated a partial cDNA to trypanosome cytochrome c. An examination of protein expression and steady-state mRNA levels in T. brucei indicated that bloodstream trypanosomes did not express cytochrome c but maintained significant steady-state levels of cytochrome c mRNA. The results suggest that in T. brucei, cytochrome c is developmentally regulated by a posttranscriptional mechanism which prevents either translation or accumulation of cytochrome c in the bloodstream trypanosomes.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1643
Author(s):  
Minu Chaudhuri ◽  
Chauncey Darden ◽  
Fidel Soto Gonzalez ◽  
Ujjal K. Singha ◽  
Linda Quinones ◽  
...  

The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Joseph T. Smith ◽  
Ujjal K. Singha ◽  
Smita Misra ◽  
Minu Chaudhuri

ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei , the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei . Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei . Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei , a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei , and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei .


mBio ◽  
2021 ◽  
Author(s):  
Uthman Okalang ◽  
Bar Mualem Bar-Ner ◽  
K. Shanmugha Rajan ◽  
Nehemya Friedman ◽  
Saurav Aryal ◽  
...  

In this study, we found that SLS is induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS.


2006 ◽  
Vol 26 (14) ◽  
pp. 5382-5393 ◽  
Author(s):  
Beiyu Liu ◽  
Henrik Molina ◽  
Dario Kalume ◽  
Akhilesh Pandey ◽  
Jack D. Griffith ◽  
...  

ABSTRACT Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as θ-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.


2021 ◽  
Author(s):  
Caroline E. Dewar ◽  
Silke Oeljeklaus ◽  
Bettina Warscheid ◽  
André Schneider

The mitochondrial F1Fo ATP synthase of Trypanosoma brucei has been studied in detail. Whereas its F1 moiety is relatively highly conserved in structure and composition, the same is not the case for the Fo part and the peripheral stalk. A core subunit of the latter, the normally conserved subunit b, could not be identified in trypanosomes suggesting that it might be absent. Here we have identified a 17 kDa mitochondrial protein of the inner membrane that is essential for normal growth, efficient oxidative phosphorylation and membrane potential maintenance. Pulldown experiments and native PAGE analysis indicate that the protein is associated with the F1Fo ATP synthase. Its ablation reduces the levels of Fo subunits, but not those of F1, and disturbs the cell cycle. HHpred analysis showed that the protein has structural similarities to subunit b of other species, indicating that the Fo part of the trypanosomal ATP synthase does contain a highly diverged subunit b. Thus, the Fo part of the trypanosomal ATPase synthase may be more widely conserved than initially thought.


Sign in / Sign up

Export Citation Format

Share Document