scholarly journals Structure, mechanism, and inhibition of Hedgehog acyltransferase

2021 ◽  
Author(s):  
Claire E. Coupland ◽  
Sebastian A. Andrei ◽  
T. Bertie Ansell ◽  
Loic Carrique ◽  
Pramod Kumar ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ningyang Gao ◽  
Li Ding ◽  
Jian Pang ◽  
Yuxin Zheng ◽  
Yuelong Cao ◽  
...  

Purpose. This study is aimed at exploring the potential metabolite/gene biomarkers, as well as the differences between the molecular mechanisms, of osteoarthritis (OA) and rheumatoid arthritis (RA). Methods. Transcriptome dataset GSE100786 was downloaded to explore the differentially expressed genes (DEGs) between OA samples and RA samples. Meanwhile, metabolomic dataset MTBLS564 was downloaded and preprocessed to obtain metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEG-metabolite relations. Finally, metabolic pathway enrichment analysis was performed to investigate the differences between the molecular mechanisms of OA and RA. Results. A total of 976 DEGs and 171 metabolites were explored between OA samples and RA samples. The PCA and linear module analysis investigated 186 DEG-metabolite interactions including Glycogenin 1- (GYG1-) asparagine_54, hedgehog acyltransferase- (HHAT-) glucose_70, and TNF receptor-associated factor 3- (TRAF3-) acetoacetate_35. Finally, the KEGG pathway analysis showed that these metabolites were mainly enriched in pathways like gap junction, phagosome, NF-kappa B, and IL-17 pathway. Conclusions. Genes such as HHAT, GYG1, and TRAF3, as well as metabolites including glucose, asparagine, and acetoacetate, might be implicated in the pathogenesis of OA and RA. Metabolites like ethanol and tyrosine might participate differentially in OA and RA progression via the gap junction pathway and phagosome pathway, respectively. TRAF3-acetoacetate interaction may be involved in regulating inflammation in OA and RA by the NF-kappa B and IL-17 pathway.


2017 ◽  
Vol 22 (4) ◽  
pp. 418-424
Author(s):  
Thomas Lanyon-Hogg ◽  
Neki V. Patel ◽  
Markus Ritzefeld ◽  
Katherine J. Boxall ◽  
Rosemary Burke ◽  
...  

The Hedgehog pathway is a key developmental signaling pathway but is also implicated in many types of cancer. The extracellular signaling protein Sonic hedgehog (Shh) requires dual lipidation for functional signaling, whereby N-terminal palmitoylation is performed by the enzyme Hedgehog acyltransferase (Hhat). Hhat is an attractive target for small-molecule inhibition to arrest Hedgehog signaling, and methods for assaying Hhat activity are central to understanding its function. However, all existing assays to quantify lipidation of peptides suffer limitations, such as safety hazards, high costs, extensive manual handling, restriction to stopped-assay measurements, or indirect assessment of lipidation. To address these limitations, we developed a microfluidic mobility shift assay (MSA) to analyze Shh palmitoylation. MSA allowed separation of fluorescently labeled Shh amine-substrate and palmitoylated Shh amide-product peptides based on differences in charge and hydrodynamic radius, coupled with online fluorescence intensity measurements for quantification. The MSA format was employed to study Hhat-catalyzed reactions, investigate Hhat kinetics, and determine small-molecule inhibitor IC50 values. Both real-time and stopped assays were performed, with the latter achieved via addition of excess unlabeled Shh peptide. The MSA format therefore allows direct and real-time fluorescence-based measurement of acylation and represents a powerful alternative technique in the study of N-lipidation.


2020 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes to discover genes associated with brain metastasis in patients with metastatic breast cancer. We report here the differential expression of the hedgehog acyltransferase-like, encoded by HHATL, in the primary tumors and brain metastases of humans with breast cancer. HHATL mRNA was present at increased quantities in brain metastatic tissues as compared to primary tumors of the breast. These data combined suggest that down-regulation of HHATL is a conserved event, both during transformation of breast tissues and progression to central nervous system metastasis and further point to potential importance of modulation of HHATL during progression of human breast cancer.


2014 ◽  
Vol 290 (4) ◽  
pp. 2235-2243 ◽  
Author(s):  
Armine Matevossian ◽  
Marilyn D. Resh

Sign in / Sign up

Export Citation Format

Share Document