The Filamin-A is a partner of Tc-mip, a new adapter protein involved in c-maf-dependent Th2 signaling pathway

2004 ◽  
Vol 40 (17) ◽  
pp. 1257-1261 ◽  
Author(s):  
Philippe Grimbert ◽  
Asta Valanciute ◽  
Vincent Audard ◽  
Philippe Lang ◽  
Georges Guellaën ◽  
...  
Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3719-3729 ◽  
Author(s):  
D.S. Rice ◽  
M. Sheldon ◽  
G. D'Arcangelo ◽  
K. Nakajima ◽  
D. Goldowitz ◽  
...  

Mutation of either reelin (Reln) or disabled-1 (Dab1) results in widespread abnormalities in laminar structures throughout the brain and ataxia in reeler and scrambler mice. Both exhibit the same neuroanatomical defects, including cerebellar hypoplasia with Purkinje cell ectopia and disruption of neuronal layers in the cerebral cortex and hippocampus. Despite these phenotypic similarities, Reln and Dab1 have distinct molecular properties. Reln is a large extracellular protein secreted by Cajal-Retzius cells in the forebrain and by granule neurons in the cerebellum. In contrast, Dab1 is a cytoplasmic protein which has properties of an adapter protein that functions in phosphorylation-dependent intracellular signal transduction. Here, we show that Dab1 participates in the same developmental process as Reln. In scrambler mice, neuronal precursors are unable to invade the preplate of the cerebral cortex and consequently, they do not align within the cortical plate. During development, cells expressing Dab1 are located next to those secreting Reln at critical stages of formation of the cerebral cortex, cerebellum and hippocampus, before the first abnormalities in cell position become apparent in either reeler or scrambler. In reeler, the major populations of displaced neurons contain elevated levels of Dab1 protein, although they express normal levels of Dab1 mRNA. This suggests that Dab1 accumulates in the absence of a Reln-evoked signal. Taken together, these results indicate that Dab1 functions downstream of Reln in a signaling pathway that controls cell positioning in the developing brain.


2021 ◽  
pp. 110191
Author(s):  
Changsheng Yang ◽  
Panpan Yang ◽  
Peilin Liu ◽  
Hong Wang ◽  
Ee Ke ◽  
...  

2011 ◽  
Vol 25 (7) ◽  
pp. 1231-1243 ◽  
Author(s):  
Leah Rider ◽  
Maria Diakonova

Abstract Prolactin (PRL) regulates cytoskeletal rearrangement and cell motility. PRL-activated Janus tyrosine kinase 2 (JAK2) phosphorylates the p21-activated serine-threonine kinase (PAK)1 and the Src homology 2 (SH2) domain-containing adapter protein SH2B1β. SH2B1β is an actin-binding protein that cross-links actin filaments, whereas PAK1 regulates the actin cytoskeleton by different mechanisms, including direct phosphorylation of the actin-binding protein filamin A (FLNa). Here, we have used a FLNa-deficient human melanoma cell line (M2) and its derivative line (A7) that stably expresses FLNa to demonstrate that SH2B1β and FLNa are required for maximal PRL-dependent cell ruffling. We have found that in addition to two actin-binding domains, SH2B1β has a FLNa-binding domain (amino acids 200–260) that binds directly to repeats 17–23 of FLNa. The SH2B1β-FLNa interaction participates in PRL-dependent actin rearrangement. We also show that phosphorylation of the three tyrosines of PAK1 by JAK2, as well as the presence of FLNa, play a role in PRL-dependent cell ruffling. Finally, we show that the actin- and FLNa-binding-deficient mutant of SH2B1β (SH2B1β 3Δ) abolished PRL-dependent ruffling and PRL-dependent cell migration when expressed along with PAK1 Y3F (JAK2 tyrosyl-phosphorylation-deficient mutant). Together, these data provide insight into a novel mechanism of PRL-stimulated regulation of the actin cytoskeleton and cell motility via JAK2 signaling through FLNa, PAK1, and SH2B1β. We propose a model for PRL-dependent regulation of the actin cytoskeleton that integrates our findings with previous studies.


2001 ◽  
Vol 21 (2) ◽  
pp. 438-448 ◽  
Author(s):  
Anja Schmidt ◽  
Emmanuelle Caron ◽  
Alan Hall

ABSTRACT Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, is a potent activator of macrophages. Besides inducing many transcriptional pathways, LPS also elicits rapid morphological changes such as cell spreading. Here we have investigated the signaling pathway that controls macrophage β2-integrin-dependent spreading in response to LPS. We show that inhibition of the adapter protein MyD88, the interleukin-1 receptor-associated kinase Irak, the p38 mitogen-activated protein kinase, or the Ras-like GTPase Rap1 blocks LPS-induced spreading. In addition, Irak activates p38 and stimulates p38-dependent spreading. The activation of p38 by Irak requires Irak's kinase activity. We find that p38 controls spreading independently of its role in transcription but rather through activation of Rap1. Together, our results suggest that β2-integrin-dependent spreading of macrophages in response to LPS is controlled by a linear signaling pathway via MyD88, Irak, p38, and Rap1.


2018 ◽  
Vol 48 (12) ◽  
pp. 1279-1286 ◽  
Author(s):  
Shuai XU ◽  
Lu HAN ◽  
HuaLan CHEN ◽  
Liang WANG ◽  
QiYun ZHU ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S41-S41
Author(s):  
Yang Bi ◽  
Yun He ◽  
Tingyu Li ◽  
Tao Feng ◽  
Tongchuan He

Sign in / Sign up

Export Citation Format

Share Document