Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain

Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3719-3729 ◽  
Author(s):  
D.S. Rice ◽  
M. Sheldon ◽  
G. D'Arcangelo ◽  
K. Nakajima ◽  
D. Goldowitz ◽  
...  

Mutation of either reelin (Reln) or disabled-1 (Dab1) results in widespread abnormalities in laminar structures throughout the brain and ataxia in reeler and scrambler mice. Both exhibit the same neuroanatomical defects, including cerebellar hypoplasia with Purkinje cell ectopia and disruption of neuronal layers in the cerebral cortex and hippocampus. Despite these phenotypic similarities, Reln and Dab1 have distinct molecular properties. Reln is a large extracellular protein secreted by Cajal-Retzius cells in the forebrain and by granule neurons in the cerebellum. In contrast, Dab1 is a cytoplasmic protein which has properties of an adapter protein that functions in phosphorylation-dependent intracellular signal transduction. Here, we show that Dab1 participates in the same developmental process as Reln. In scrambler mice, neuronal precursors are unable to invade the preplate of the cerebral cortex and consequently, they do not align within the cortical plate. During development, cells expressing Dab1 are located next to those secreting Reln at critical stages of formation of the cerebral cortex, cerebellum and hippocampus, before the first abnormalities in cell position become apparent in either reeler or scrambler. In reeler, the major populations of displaced neurons contain elevated levels of Dab1 protein, although they express normal levels of Dab1 mRNA. This suggests that Dab1 accumulates in the absence of a Reln-evoked signal. Taken together, these results indicate that Dab1 functions downstream of Reln in a signaling pathway that controls cell positioning in the developing brain.

2015 ◽  
Vol 112 (30) ◽  
pp. 9484-9489 ◽  
Author(s):  
Gerald J. Sun ◽  
Yi Zhou ◽  
Ryan P. Stadel ◽  
Jonathan Moss ◽  
Jing Hui A. Yong ◽  
...  

In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system.


Neuroscience ◽  
2004 ◽  
Vol 123 (3) ◽  
pp. 715-724 ◽  
Author(s):  
A Okabe ◽  
W Kilb ◽  
C Shimizu-Okabe ◽  
I.L Hanganu ◽  
A Fukuda ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuya Morita ◽  
Naoyuki Matsumoto ◽  
Kengo Saito ◽  
Toshihide Hamabe-Horiike ◽  
Keishi Mizuguchi ◽  
...  

AbstractAquaporin-4 (AQP4) is a predominant water channel expressed in astrocytes in the mammalian brain. AQP4 is crucial for the regulation of homeostatic water movement across the blood–brain barrier (BBB). Although the molecular mechanisms regulating AQP4 levels in the cerebral cortex under pathological conditions have been intensively investigated, those under normal physiological conditions are not fully understood. Here we demonstrate that AQP4 is selectively expressed in astrocytes in the mouse cerebral cortex during development. BMP signaling was preferentially activated in AQP4-positive astrocytes. Furthermore, activation of BMP signaling by in utero electroporation markedly increased AQP4 levels in the cerebral cortex, and inhibition of BMP signaling strongly suppressed them. These results indicate that BMP signaling alters AQP4 levels in the mouse cerebral cortex during development.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shanshan Wang ◽  
Yunliang Wang ◽  
Qingshan Lu ◽  
Xinshan Liu ◽  
Fuyu Wang ◽  
...  

Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), has multiple functions involved in neuritogenesis, transcriptional regulation, and apoptosis. However, whether ANP32A has an effect on the mammalian developing brain is still in question. In this study, it was shown that brain was the organ that expressed the most abundant ANP32A by human multiple tissue expression (MTE) array. The distribution of ANP32A in the different adult brain areas was diverse dramatically, with high expression in cerebellum, temporal lobe, and cerebral cortex and with low expression in pons, medulla oblongata, and spinal cord. The expression of ANP32A was higher in the adult brain than in the fetal brain of not only humans but also mice in a time-dependent manner. ANP32A signals were dispersed accordantly in embryonic mouse brain. However, ANP32A was abundant in the granular layer of the cerebellum and the cerebral cortex when the mice were growing up, as well as in the Purkinje cells of the cerebellum. The variation of expression levels and distribution of ANP32A in the developing brain would imply that ANP32A may play an important role in mammalian brain development, especially in the differentiation and function of neurons in the cerebellum and the cerebral cortex.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pradip K. Sarkar ◽  
Avijit Biswas ◽  
Arun K. Ray ◽  
Joseph V. Martin

The role of thyroid hormones (TH) in the normal functioning of adult mammalian brain is unclear. Our studies have identified synaptosomal Na+-K+-ATPase as a TH-responsive physiological parameter in adult rat cerebral cortex. L-triiodothyronine (T3) and L-thyroxine (T4) both inhibited Na+-K+-ATPase activity (but not Mg2+-ATPase activity) in similar dose-dependent fashions, while other metabolites of TH were less effective. Although both T3and theβ-adrenergic agonist isoproterenol inhibited Na+-K+-ATPase activity in cerebrocortical synaptosomes in similar ways, theβ-adrenergic receptor blocker propranolol did not counteract the effect of T3. Instead, propranolol further inhibited Na+-K+-ATPase activity in a dose-dependent manner, suggesting that the effect of T3on synaptosomal Na+-K+-ATPase activity was independent ofβ-adrenergic receptor activation. The effect of T3on synaptosomal Na+-K+-ATPase activity was inhibited by theα2-adrenergic agonist clonidine and by glutamate. Notably, both clonidine and glutamate activateGi-proteins of the membrane second messenger system, suggesting a potential mechanism for the inhibition of the effects of TH. In this paper, we provide support for a nongenomic mechanism of action of TH in a neuronal membrane-related energy-linked process for signal transduction in the adult condition.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 641
Author(s):  
Ning Li ◽  
Linggai Cao ◽  
Wenzhuo Miu ◽  
Ruibin Cao ◽  
Mingbo Peng ◽  
...  

The plant hormone jasmonic acid (JA) has an important role in many aspects of plant defense response and developmental process. JA triggers interaction between the F-box protein COI1 and the transcriptional repressors of the JAZ family that leads the later to proteasomal degradation. The Jas-motif of JAZs is critical for mediating the COI1 and JAZs interaction in the presence of JA. Here, by using the protoplast transient gene expression system we reported that the Jas-motif of JAZ1 was necessary and sufficient to target a foreign reporter protein for COI1-facilitated degradation. We fused the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway to create a chimeric protein JaSHY. Interestingly, JaSHY retained the transcriptional repressor function while become degradable by the JA coreceptor COI1 in a JA-dependent fashion. Moreover, the JA-induced and COI1-facilitated degradation of JaSHY led to activation of a synthetic auxin-responsive promoter activity. These results showed that the modular components of JA signal transduction pathway can be artificially redirected to regulate auxin signaling pathway and control auxin-responsive gene expression. Our work provides a general strategy for using synthetic biology approaches to explore and design cell signaling networks to generate new cellular functions in plant systems.


2004 ◽  
Vol 40 (17) ◽  
pp. 1257-1261 ◽  
Author(s):  
Philippe Grimbert ◽  
Asta Valanciute ◽  
Vincent Audard ◽  
Philippe Lang ◽  
Georges Guellaën ◽  
...  

1991 ◽  
Vol 66 (6) ◽  
pp. 2059-2071 ◽  
Author(s):  
E. Friauf ◽  
C. J. Shatz

1. The development of excitatory activation in the visual cortex was studied in fetal and neonatal cats. During fetal and neonatal life, the immature cerebral cortex (the cortical plate) is sandwiched between two synaptic zones: the marginal zone above, and an area just below the cortical plate, the subplate. The subplate is transient and disappears by approximately 2 mo postnatal. Here we have investigated whether the subplate and the cortical plate receive functional synaptic inputs in the fetus, and when the adultlike pattern of excitatory synaptic input to the cortical plate appears during development. 2. Extracellular field potential recording to electrical stimulation of the optic radiation was performed in slices of cerebral cortex maintained in vitro. Laminar profiles of field potentials were converted by the current-source density (CSD) method to identify the spatial and temporal distribution of neuronal excitation within the subplate and the cortical plate. 3. Between embryonic day 47 (E47) and postnatal day 28 (P28; birth, E65), age-related changes occur in the pattern of synaptic activation of neurons in the cortical plate and the subplate. Early in development, at E47, E57, and P0, short-latency (probably monosynaptic) excitation is most obvious in the subplate, and longer latency (presumably polysynaptic) excitation can be seen in the cortical plate. Synaptic excitation in the subplate is no longer apparent at P21 and P28, a time when cell migration is finally complete and the cortical layers have formed. By contrast, excitation in the cortical plate is prominent in postnatal animals, and the temporal and spatial pattern has changed. 4. The adultlike sequence of synaptic activation in the different cortical layers can be seen by P28. It differs from earlier ages in several respects. First, short-latency (probably monosynaptic) excitation can be detected in cortical layer 4. Second, multisynaptic, long-lasting activation is present in layers 2/3 and 5. 5. Our results show that the subplate zone, known from anatomic studies to be a synaptic neurophil during development, receives functional excitatory inputs from axons that course in the developing white matter. Because the only mature neurons present in this zone are the subplate neurons, we conclude that subplate neurons are the principal, if not the exclusive, recipients of this input. The results suggest further that the excitation in the subplate in turn is relayed to neurons of the cortical plate via axon collaterals of subplate neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document