Enhanced T-cell activation and T-cell-dependent IL-2 production by CD83+, CD25high, CD43high human monocyte-derived dendritic cells

2007 ◽  
Vol 44 (7) ◽  
pp. 1544-1550 ◽  
Author(s):  
Florian W. Velten ◽  
Florian Rambow ◽  
P. Metharom ◽  
Sergij Goerdt
Author(s):  
Mariko Morishita ◽  
Kaoru Uchimaru ◽  
Katsuaki Sato ◽  
Akira Ohtsuru ◽  
Shunichi Yamashita ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3499-3504 ◽  
Author(s):  
Paul J. Mosca ◽  
Amy C. Hobeika ◽  
Timothy M. Clay ◽  
Smita K. Nair ◽  
Elaine K. Thomas ◽  
...  

Abstract Dendritic cells (DCs) may arise from multiple lineages and progress through a series of intermediate stages until fully mature, at which time they are capable of optimal antigen presentation and T-cell activation. High cell surface expression of CD83 is presumed to correlate with full maturation of DCs, and a number of agents have been shown to increase CD83 expression on DCs. We hypothesized that interleukin 12 (IL-12) expression would be a more accurate marker of functionally mature DCs capable of activating antigen-specific T cells. We used combinations of signaling through CD40, using CD40 ligand trimer (CD40L), and interferon gamma to demonstrate that CD83 expression is necessary but not sufficient for optimal production of IL-12 by DCs. Phenotypically mature DCs could be induced to produce high levels of IL-12 p70 only when provided 2 simultaneous stimulatory signals. By intracellular cytokine detection, we determined that only a subset of cells that express high levels of CD80 and CD83 generate large amounts of IL-12. DCs matured with both signals are superior to DCs stimulated with the individual agents in activating antigen-specific T cell in vitro. These findings have important implications regarding the identification, characterization, and clinical application of functionally mature DCs.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3499-3504 ◽  
Author(s):  
Paul J. Mosca ◽  
Amy C. Hobeika ◽  
Timothy M. Clay ◽  
Smita K. Nair ◽  
Elaine K. Thomas ◽  
...  

Dendritic cells (DCs) may arise from multiple lineages and progress through a series of intermediate stages until fully mature, at which time they are capable of optimal antigen presentation and T-cell activation. High cell surface expression of CD83 is presumed to correlate with full maturation of DCs, and a number of agents have been shown to increase CD83 expression on DCs. We hypothesized that interleukin 12 (IL-12) expression would be a more accurate marker of functionally mature DCs capable of activating antigen-specific T cells. We used combinations of signaling through CD40, using CD40 ligand trimer (CD40L), and interferon gamma to demonstrate that CD83 expression is necessary but not sufficient for optimal production of IL-12 by DCs. Phenotypically mature DCs could be induced to produce high levels of IL-12 p70 only when provided 2 simultaneous stimulatory signals. By intracellular cytokine detection, we determined that only a subset of cells that express high levels of CD80 and CD83 generate large amounts of IL-12. DCs matured with both signals are superior to DCs stimulated with the individual agents in activating antigen-specific T cell in vitro. These findings have important implications regarding the identification, characterization, and clinical application of functionally mature DCs.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3818
Author(s):  
Maud Plantinga ◽  
Denise A. M. H. van den Beemt ◽  
Ester Dünnebach ◽  
Stefan Nierkens

Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.


Oncogene ◽  
2021 ◽  
Author(s):  
Francesca Alfei ◽  
Ping-Chih Ho ◽  
Wan-Lin Lo

AbstractThe exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell–T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


2004 ◽  
Vol 72 (7) ◽  
pp. 4233-4239 ◽  
Author(s):  
Andrew L. Leisewitz ◽  
Kirk A. Rockett ◽  
Bonginkosi Gumede ◽  
Margaret Jones ◽  
Britta Urban ◽  
...  

ABSTRACT Dendritic cells, particularly those residing in the spleen, are thought to orchestrate acquired immunity to malaria, but it is not known how the splenic dendritic cell population responds to malaria infection and how this response compares with the responses of other antigen-presenting cells. We investigated this question for Plasmodium chabaudi AS infection in C57BL/6 mice. We found that dendritic cells, defined here by the CD11c marker, migrated from the marginal zone of the spleen into the CD4+ T-cell area within 5 days after parasites entered the bloodstream. This contrasted with the results observed for the macrophage and B-cell populations, which expanded greatly but did not show any comparable migration. Over the same time period dendritic cells showed upregulation of CD40, CD54, and CD86 costimulatory molecules that are required for successful T-cell activation. In dendritic cells, the peak intracellular gamma interferon expression (as shown by fluorescence-activated cell sorting) was on day 5, 2 days earlier than the peak expression in B-cells or macrophages. These findings show that splenic dendritic cells are actively engaged in the earliest phase of malarial infection in vivo and are likely to be critical in shaping the subsequent immune response.


Sign in / Sign up

Export Citation Format

Share Document