Feedback regulation of antioxidant transcription factor NFE2L1 and immunostimulatory factor 41BBL mediates the crosstalk between oxidative stress and tumor immunity

2022 ◽  
Vol 141 ◽  
pp. 265-272
Author(s):  
Lu Qiu ◽  
Haoming Ning ◽  
Yaqian Zhu ◽  
Qiufang Yang ◽  
Lulu Liu ◽  
...  
2010 ◽  
Vol 22 (11) ◽  
pp. 3634-3649 ◽  
Author(s):  
Jigang Li ◽  
Gang Li ◽  
Shumin Gao ◽  
Cristina Martinez ◽  
Guangming He ◽  
...  

Author(s):  
JaeSang Ko ◽  
Ji-Young Kim ◽  
Min Kyung Chae ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

We examined endoplasmic reticulum (ER) stress-related gene expression in orbital tissues from patients with Graves’ orbitopathy (GO) and the effects of silencing protein kinase RNA-like endoplasmic reticulum kinase (PERK) in primary orbital fibroblast cultures to demonstrate the therapeutic potential of PERK-modulating agents in GO management. The expression of ER stress related genes in orbital tissue harvested from individuals with or without GO was studied using real-time polymerase chain reaction. The role of PERK in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in cultured primary orbital fibroblasts. Intracellular reactive oxygen species (ROS) levels induced in response to cigarette smoke extract (CSE) or hydrogen peroxide were measured using 5-(and 6)-carboxy-20,70-dichlorodihydrofluorescein diacetate staining and flow cytometry. Cells were stained with Oil Red O, and adipogenesis-related transcription factor expression was evaluated through western blotting after adipogenic differentiation. PERK, activating transcription factor 4 (ATF4), and CCAAT-enhancer-binding protein (C/EBP)-homologous protein(CHOP)mRNA levels were significantly higher in GO orbital tissues than in non-GO orbital tissues. PERK silencing inhibited CSE- or hydrogen peroxide-induced ROS generation. After adipogenic differentiation, GO orbital fibroblasts revealed decreased lipid droplets and downregulation of C/EBPα, C/EBPβ, and peroxisome proliferator-activator gamma (PPARγ) in PERK siRNA-transfected cells. The orbital tissues of patients with GO were exposed to chronic ER stress and subsequently exhibited enhanced unfolded protein response (especially through the PERK pathway). PERK silencing reduced oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. Our results imply that PERK-modulating agents can potentially be used to manage GO.


2021 ◽  
Author(s):  
Anindita Dutta ◽  
Apurba Das ◽  
Deep Bisht ◽  
Vijendra Arya ◽  
Rohini Muthuswami

Cells respond to oxidative stress by elevating the levels of antioxidants, signaling, and transcriptional regulation often implemented by chromatin remodeling proteins.  The study presented in this paper shows that the expression of PICH, an ATP-dependent chromatin remodeler, is upregulated during oxidative stress in HeLa cells. We also show that PICH regulates the expression of Nrf2, a transcription factor regulating antioxidant response, both in the absence and presence of oxidative stress. In turn, Nrf2 regulates the expression of PICH in the presence of oxidative stress. Both PICH and Nrf2 together regulate the expression of antioxidant genes and this transcriptional regulation is dependent on the ATPase activity of PICH. In addition, H3K27ac modification also plays a role in activating transcription in the presence of oxidative stress. Co-immunoprecipitation experiments show that PICH and Nrf2 interact with H3K27ac in the presence of oxidative stress. Mechanistically, PICH recognizes ARE sequences present on its target genes and introduces a conformational change to the DNA sequences leading us to hypothesize that PICH regulates transcription by remodeling DNA. PICH ablation leads to reduced expression of Nrf2 and impaired antioxidant response leading to increased ROS content, thus, showing PICH is essential for the cell to respond to oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1856
Author(s):  
Ana Čipak Gašparović ◽  
Lidija Milković ◽  
Claudia Rodrigues ◽  
Monika Mlinarić ◽  
Graça Soveral

Oxidative stress can induce genetic instability and change cellular processes, resulting in colorectal cancer. Additionally, adaptation of oxidative defense causes therapy resistance, a major obstacle in successful cancer treatment. Peroxiporins are aquaporin membrane channels that facilitate H2O2 membrane permeation, crucial for regulating cell proliferation and antioxidative defense. Here, we investigated four colon cancer cell lines (Caco-2, HT-29, SW620, and HCT 116) for their sensitivity to H2O2, cellular antioxidative status, and ROS intracellular accumulation after H2O2 treatment. The expression of peroxiporins AQP1, AQP3, and AQP5 and levels of NRF2, the antioxidant transcription factor, and PPARγ, a transcription factor that regulates lipid metabolism, were evaluated before and after oxidative insult. Of the four tested cell lines, HT-29 was the most resistant and showed the highest expression of all tested peroxiporins and the lowest levels of intracellular ROS, without differences in GSH levels, catalase activity, nor NF2 and PPARγ levels. Caco-2 shows high expression of AQP3 and similar resistance as HT-29. These results imply that oxidative stress resistance can be obtained by several mechanisms other than the antioxidant defense system. Regulation of intracellular ROS through modulation of peroxiporin expression may represent an additional strategy to target the therapy resistance of cancer cells.


2016 ◽  
Vol 213 (5) ◽  
pp. 859-875 ◽  
Author(s):  
Chun Yang ◽  
Ye-xiong Tan ◽  
Guang-zhen Yang ◽  
Jian Zhang ◽  
Yu-fei Pan ◽  
...  

Oxidative stress status has a key role in hepatocellular carcinoma (HCC) development and progression. Normally, reactive oxygen species (ROS) levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors. How HCC cells respond to excessive oxidative stress remains elusive. Here, we identified a feedback loop between gankyrin, an oncoprotein overexpressed in human HCC, and Nrf2 maintaining the homeostasis in HCC cells. Mechanistically, gankyrin was found to interact with the Kelch domain of Keap1 and effectively competed with Nrf2 for Keap1 binding. Increased expression of gankyrin in HCC cells blocked the binding between Nrf2 and Keap1, inhibiting the degradation of Nrf2 by proteasome. Interestingly, accumulation and translocation of Nrf2 increased the transcription of gankyrin through binding to the ARE elements in the promoter of gankyrin. The positive feedback regulation involving gankyrin and Nrf2 modulates a series of antioxidant enzymes, thereby lowering intracellular ROS and conferring a steadier intracellular environment, which prevents mitochondrial damage and cell death induced by excessive oxidative stress. Our results indicate that gankyrin is a regulator of cellular redox homeostasis and provide a link between oxidative stress and the development of HCC.


2016 ◽  
Vol 180 ◽  
pp. 141-154 ◽  
Author(s):  
Larissa M. Williams ◽  
Briony A. Lago ◽  
Andrew G. McArthur ◽  
Amogelang R. Raphenya ◽  
Nicholas Pray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document