A 2D-Raman correlation spectroscopy analysis of the polymeric nanocomposites with magnetic nanoparticles

2020 ◽  
Vol 1215 ◽  
pp. 128294
Author(s):  
Anna Kołodziej ◽  
Aleksandra Wesełucha-Birczyńska ◽  
Małgorzata Świętek ◽  
Daniel Horák ◽  
Marta Błażewicz
2017 ◽  
Vol 71 (7) ◽  
pp. 1427-1431 ◽  
Author(s):  
Isao Noda ◽  
Anjan Roy ◽  
James Carriere ◽  
Brian J. Sobieski ◽  
D. Bruce Chase ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10734
Author(s):  
Elena N. Velichko ◽  
Elina K. Nepomnyashchaya ◽  
Maksim A. Baranov ◽  
Alexey N. Skvortsov ◽  
Ivan V. Pleshakov ◽  
...  

In this study, interactions of Fe3O4 magnetic nanoparticles with serum albumin biomolecules in aqueous solutions were considered. The studies were conducted with the laser correlation spectroscopy and optical analysis of dehydrated films. It was shown that the addition of magnetite to an albumin solution at low concentrations of up to 10−6 g/L led to the formation of aggregates with sizes of up to 300 nm in the liquid phase and an increase in the number of spiral structures in the dehydrated films, which indicated an increase in their stability. With a further increase in the magnetite concentration in the solution (from 10−4 g/L), the magnetic particles stuck together and to albumin, thus forming aggregates with sizes larger than 1000 nm. At the same time, the formation of morphological structures in molecular films was disturbed, and a characteristic decrease in their stability occurred. Most stable films were formed at low concentrations of magnetic nanoparticles (less than 10−4 g/L) when small albumin–magnetic nanoparticle aggregates were formed. These results are important for characterizing the interaction processes of biomolecules with magnetic nanoparticles and can be useful for predicting the stability of biomolecular films with the inclusion of magnetite particles.


2019 ◽  
Vol 10 (3) ◽  
pp. 32 ◽  
Author(s):  
Hendrik Schöneborn ◽  
Fabian Raudzus ◽  
Emilie Secret ◽  
Nils Otten ◽  
Aude Michel ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disease associated with loss or dysfunction of dopaminergic neurons located in the substantia nigra (SN), and there is no cure available. An emerging new approach for treatment is to transplant human induced dopaminergic neurons directly into the denervated striatal brain target region. Unfortunately, neurons grafted into the substantia nigra are unable to grow axons into the striatum and thus do not allow recovery of the original connectivity. Towards overcoming this general limitation in guided neuronal regeneration, we develop here magnetic nanoparticles functionalized with proteins involved in the regulation of axonal growth. We show covalent binding of constitutive active human rat sarcoma (RAS) proteins or RAS guanine nucleotide exchange factor catalytic domain of son of sevenless (SOS) by fluorescence correlation spectroscopy and multiangle light scattering as well as the characterization of exchange factor activity. Human dopaminergic neurons were differentiated from neural precursor cells and characterized by electrophysiological and immune histochemical methods. Furthermore, we demonstrate magnetic translocation of cytoplasmic γ-Fe2O3@SiO2 core-shell nanoparticles into the neurite extensions of induced human neurons. Altogether, we developed tools towards remote control of directed neurite growth in human dopaminergic neurons. These results may have relevance for future therapeutic approaches of cell replacement therapy in Parkinson’s disease.


1998 ◽  
Vol 111 (2) ◽  
pp. 271-281 ◽  
Author(s):  
C.M. Brown ◽  
N.O. Petersen

Clathrin associated adaptor protein is involved in endocytosis at the plasma membrane (AP-2) and protein sorting at the Golgi membrane (AP-1). There is a great deal of information available on the structure, function and binding characteristics of AP-2, however, there is little quantitative data on the AP-2 distribution at the membrane. Image correlation spectroscopy is a technique which yields number counts from an autocorrelation analysis of intensity fluctuations within confocal microscopy images. Image correlation spectroscopy analysis of the indirect immunofluorescence from AP-2 at the plasma membrane of CV-1 cells shows that AP-2 is in a bimodal distribution consisting of large coated pit associated aggregates of approximately 60 AP-2 molecules, and smaller aggregates containing approximately 20 AP-2 molecules, which we propose are coated pit nucleation sites. Following hypertonic treatment 25% of the AP-2 molecules dissociate from the large AP-2 aggregates and form AP-2 dimers, leaving the remaining AP-2 as large aggregates with approximately 45 molecules. The smaller AP-2 aggregates completely dissociate forming AP-2 dimers. Dispersion of AP-2 with hypertonic treatment is not seen qualitatively because the number of large AP-2 aggregates is unchanged, the aggregates are just 25% smaller. Change in temperature from 37 degrees C to 4 degrees C has no affect on the number of AP-2 aggregates or the AP-2 distribution between the two populations. These data and estimates of the coated pit size suggest that coated pits cover approximately 0.9% of the cell membrane. Combination of image correlation spectroscopy analysis and measurements of the CV-1 cell surface area show that there are approximately 6x10(5) AP-2 molecules per CV-1 cell with approximately 2x10(5) AP-2 molecules within coated pit structures.


1998 ◽  
Vol 57 (3) ◽  
pp. R2523-R2526 ◽  
Author(s):  
Wolfgang Schrof ◽  
Jürgen F. Klingler ◽  
Stanislaw Rozouvan ◽  
Dieter Horn

Sign in / Sign up

Export Citation Format

Share Document