An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane

1998 ◽  
Vol 111 (2) ◽  
pp. 271-281 ◽  
Author(s):  
C.M. Brown ◽  
N.O. Petersen

Clathrin associated adaptor protein is involved in endocytosis at the plasma membrane (AP-2) and protein sorting at the Golgi membrane (AP-1). There is a great deal of information available on the structure, function and binding characteristics of AP-2, however, there is little quantitative data on the AP-2 distribution at the membrane. Image correlation spectroscopy is a technique which yields number counts from an autocorrelation analysis of intensity fluctuations within confocal microscopy images. Image correlation spectroscopy analysis of the indirect immunofluorescence from AP-2 at the plasma membrane of CV-1 cells shows that AP-2 is in a bimodal distribution consisting of large coated pit associated aggregates of approximately 60 AP-2 molecules, and smaller aggregates containing approximately 20 AP-2 molecules, which we propose are coated pit nucleation sites. Following hypertonic treatment 25% of the AP-2 molecules dissociate from the large AP-2 aggregates and form AP-2 dimers, leaving the remaining AP-2 as large aggregates with approximately 45 molecules. The smaller AP-2 aggregates completely dissociate forming AP-2 dimers. Dispersion of AP-2 with hypertonic treatment is not seen qualitatively because the number of large AP-2 aggregates is unchanged, the aggregates are just 25% smaller. Change in temperature from 37 degrees C to 4 degrees C has no affect on the number of AP-2 aggregates or the AP-2 distribution between the two populations. These data and estimates of the coated pit size suggest that coated pits cover approximately 0.9% of the cell membrane. Combination of image correlation spectroscopy analysis and measurements of the CV-1 cell surface area show that there are approximately 6x10(5) AP-2 molecules per CV-1 cell with approximately 2x10(5) AP-2 molecules within coated pit structures.

2018 ◽  
Vol 24 (S1) ◽  
pp. 1356-1357
Author(s):  
S. Makaremi ◽  
S. Ranjit ◽  
M.A. Digman ◽  
E. Gratton ◽  
D. M.E. Bowdish ◽  
...  

2016 ◽  
Vol 22 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Martina Laňková ◽  
Jana Humpolíčková ◽  
Stanislav Vosolsobě ◽  
Zdeněk Cit ◽  
Jozef Lacek ◽  
...  

AbstractA number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.


1999 ◽  
Vol 77 (5) ◽  
pp. 439-448 ◽  
Author(s):  
Claire M Brown ◽  
Nils O Petersen

In this study image correlation spectroscopy was used to demonstrate the presence of two populations of clathrin in situ, on intact cells. In the periphery of the cell ~35% of the clathrin triskelions are free within the cytosol while ~65% are in large aggregates, presumably coated pits. Although endocytosis is inhibited at low temperature, free clathrin triskelions are still present and small AP-2 aggregates (of ~20 proteins), or coated pit nucleation sites, are still observed. Following hypertonic treatment, or cytoplasmic acidification, free clathrin triskelions within the cytosol are depleted and all of the clathrin becomes associated with the membrane. Under these conditions coated pit associated AP-2 remains while the smaller AP-2 aggregates, or coated pit nucleation sites, dissociate. This indicates that the stabilization of AP-2 coated pit nucleation sites requires the presence of free clathrin triskelions within the cytosol. Furthermore, this indicates that free clathrin is required for the early stages of coated pit formation and presumably the continuation of the clathrin-mediated endocytic process. We also provide indirect evidence that AP-2 binding to the membrane in coated pit nucleation sites may be regulated in part by binding to internalization-competent membrane receptors.Key words: adaptor protein (AP-2), clathrin, distribution, nucleation sites, endocytosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Makaremi ◽  
Markus Rose ◽  
Suman Ranjit ◽  
Michelle A. Digman ◽  
Dawn M. E. Bowdish ◽  
...  

Abstract The diffusion of membrane receptors is central to many biological processes, such as signal transduction, molecule translocation, and ion transport, among others; consequently, several advanced fluorescence microscopy techniques have been developed to measure membrane receptor mobility within live cells. The membrane-anchored receptor cluster of differentiation 14 (CD14) and the transmembrane toll-like receptor 2 (TLR2) are important receptors in the plasma membrane of macrophages that activate the intracellular signaling cascade in response to pathogenic stimuli. The aim of the present work was to compare the diffusion coefficients of CD14 and TLR2 on the apical and basal membranes of macrophages using two fluorescence-based methods: raster image correlation spectroscopy (RICS) and single particle tracking (SPT). In the basal membrane, the diffusion coefficients obtained from SPT and RICS were found to be comparable and revealed significantly faster diffusion of CD14 compared with TLR2. In addition, RICS showed that the diffusion of both receptors was significantly faster in the apical membrane than in the basal membrane, suggesting diffusion hindrance by the adhesion of the cells to the substrate. This finding highlights the importance of selecting the appropriate membrane (i.e., basal or apical) and corresponding method when measuring receptor diffusion in live cells. Accurately knowing the diffusion coefficient of two macrophage receptors involved in the response to pathogen insults will facilitate the study of changes that occur in signaling in these cells as a result of aging and disease.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 568
Author(s):  
Jakob L. Kure ◽  
Thommie Karlsson ◽  
Camilla B. Andersen ◽  
B. Christoffer Lagerholm ◽  
Vesa Loitto ◽  
...  

The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.


2018 ◽  
Vol 207 ◽  
pp. 409-421 ◽  
Author(s):  
Hirak Chakraborty ◽  
Md. Jafurulla ◽  
Andrew H. A. Clayton ◽  
Amitabha Chattopadhyay

Photobleaching image correlation spectroscopy (pbICS) reveals that membrane cholesterol modulates the oligomeric state of the serotonin1A receptor.


2016 ◽  
Vol 110 (3) ◽  
pp. 176a
Author(s):  
Jelle Hendrix ◽  
Tomas Dekens ◽  
Don C. Lamb

2017 ◽  
Author(s):  
Ali Isbilir ◽  
Jan Möller ◽  
Andreas Bock ◽  
Ulrike Zabel ◽  
Paolo Annibale ◽  
...  

AbstractG protein-coupled receptors (GPCRs) represent the largest class of cell surface receptors conveying extracellular information into intracellular signals. Many GPCRs have been shown to be able to oligomerize and it is firmly established that Class C GPCRs (e.g. metabotropic glutamate receptors) function as obligate dimers. However, the oligomerization capability of the larger Class A GPCRs (e.g. comprising the β-adrenergic receptors (β-ARs)) is still, despite decades of research, highly debated.Here we assess the oligomerization behavior of three prototypical Class A GPCRs, the β1-ARs, β2-ARs, and muscarinic M2Rs in single, intact cells. We combine two image correlation spectroscopy methods based on molecular brightness, i.e. the analysis of fluorescence fluctuations over space and over time, and thereby provide an assay able to robustly and precisely quantify the degree of oligomerization of GPCRs. In addition, we provide a comparison between two labelling strategies, namely C-terminally-attached fluorescent proteins and N-terminally-attached SNAP-tags, in order to rule out effects arising from potential fluorescent protein-driven oligomerization. The degree of GPCR oligomerization is expressed with respect to a set of previously reported as well as newly established monomeric or dimeric control constructs. Our data reveal that all three prototypical GPRCs studied display, under unstimulated conditions, a prevalently monomeric fingerprint. Only the β2-AR shows a slight degree of oligomerization.From a methodological point of view, our study suggests three key aspects. First, the combination of two image correlation spectroscopy methods allows addressing cells transiently expressing high concentrations of membrane receptors, far from the single molecule regime, at a density where the kinetic equilibrium should favor dimers and higher-order oligomers. Second, our methodological approach, allows to selectively target cell membrane regions devoid of artificial oligomerization hot-spots (such as vesicles). Third, our data suggest that the β1-AR appears to be a superior monomeric control than the widely used membrane protein CD86.Taken together, we suggest that our combined image correlation spectroscopy method is a powerful approach to assess the oligomerization behavior of GPCRs in intact cells at high expression levels.


Sign in / Sign up

Export Citation Format

Share Document