scholarly journals Screening of Cryptogamic Secondary Metabolites as Putative Inhibitors of SARS-CoV-2 Main Protease and Ribosomal Binding Domain of Spike Glycoprotein by Molecular Docking and Molecular Dynamics Approaches

2021 ◽  
pp. 130506
Author(s):  
G. Prateeksha ◽  
Tikam S Rana ◽  
Ashish K Ashthana ◽  
Saroj K Barik ◽  
Brahma N Singh
2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


2021 ◽  
Vol 01 ◽  
Author(s):  
Sharuk L. Khan ◽  
Falak A. Siddiqui ◽  
Mohd Sayeed Shaikh ◽  
Nitin V. Nema ◽  
Aijaz A. Shaikh

Background: COVID-19 (SARS-CoV-2 infection) has affected almost every region of the world. Presently, there is no defined line of treatment available for it. Triphala is already proven to have a safe biological window and well known for its antioxidant and immunomodulatory properties. Objective: Present work has been carried out to study Triphala's effectiveness for the treatment of COVID-19. Methods: The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein responsible for the invasion into the host cell, which leads to further infection. The molecular docking (MD) was performed to explore the binding affinities (kcal/mol) of Triphala's chemical constituents and compared them with the existing drugs under investigation for the treatment of COVID-19 epidemiology. Results: Chebulinic acid binding affinity -8.5 kcal/mol with the formation of 10 hydrogen bonds. Almost all the major chemical constituents have formed two or more hydrogen bonds with RBD of SARS-CoV-2 Spike Glycoprotein. Conclusion: The present study showed that Triphala might perform vital roles in the treatment of COVID-19 and expand its usefulness to physicians to treat this illness. There is a need to complete the in-vitro, in-vivo biological testing of Triphala on SARS-CoV-2 disease to create more quality data. The binding mode of Chebulinic acid in the allosteric cavity allows a better understanding of RBD of SARS-CoV-2 Spike Glycoprotein target and provides insight for the design of new inhibitors. Triphala is already proven to have a safe biological window, which indicates we can skip the pre-clinical trials. Apart from this, Triphala is well known for its antioxidant properties, which ultimately improves the immunity of the COVID-19 patient.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 789
Author(s):  
Mycal Dutta ◽  
Abu Montakim Tareq ◽  
Ahmed Rakib ◽  
Shafi Mahmud ◽  
Saad Ahmed Sami ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a contemporary coronavirus, has impacted global economic activity and has a high transmission rate. As a result of the virus’s severe medical effects, developing effective vaccinations is vital. Plant-derived metabolites have been discovered as potential SARS-CoV-2 inhibitors. The SARS-CoV-2 main protease (Mpro) is a target for therapeutic research because of its highly conserved protein sequence. Gas chromatography–mass spectrometry (GC-MS) and molecular docking were used to screen 34 compounds identified from Leucas zeylanica for potential inhibitory activity against the SARS-CoV-2 Mpro. In addition, prime molecular mechanics–generalized Born surface area (MM-GBSA) was used to screen the compound dataset using a molecular dynamics simulation. From molecular docking analysis, 26 compounds were capable of interaction with the SARS-CoV-2 Mpro, while three compounds, namely 11-oxa-dispiro[4.0.4.1]undecan-1-ol (−5.755 kcal/mol), azetidin-2-one 3,3-dimethyl-4-(1-aminoethyl) (−5.39 kcal/mol), and lorazepam, 2TMS derivative (−5.246 kcal/mol), exhibited the highest docking scores. These three ligands were assessed by MM-GBSA, which revealed that they bind with the necessary Mpro amino acids in the catalytic groove to cause protein inhibition, including Ser144, Cys145, and His41. The molecular dynamics simulation confirmed the complex rigidity and stability of the docked ligand–Mpro complexes based on the analysis of mean radical variations, root-mean-square fluctuations, solvent-accessible surface area, radius of gyration, and hydrogen bond formation. The study of the postmolecular dynamics confirmation also confirmed that lorazepam, 11-oxa-dispiro[4.0.4.1]undecan-1-ol, and azetidin-2-one-3, 3-dimethyl-4-(1-aminoethyl) interact with similar Mpro binding pockets. The results of our computerized drug design approach may assist in the fight against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document