scholarly journals Investigation of Cu metal nanoparticles with different morphologies to inhibit SARS-CoV-2 main protease and spike glycoprotein using Molecular Docking and Dynamics Simulation

2021 ◽  
pp. 132301
Author(s):  
Mohammadreza Aallaei ◽  
Elaheh Molaakbari ◽  
Paridokht Mostafavi ◽  
Navvabeh Salarizadeh ◽  
Rahime Eshaghi Maleksah ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 389
Author(s):  
Sameh S. Elhady ◽  
Reda F. A. Abdelhameed ◽  
Rania T. Malatani ◽  
Abdulrahman M. Alahdal ◽  
Hanin A. Bogari ◽  
...  

Presently, the world is under the toll of pandemic coronavirus disease-2019 (COVID-19) outbreak caused by SARS-CoV-2. Lack of effective and safe therapeutics has stressed the scientific community for developing novel therapeutics capable of alleviating and stopping this pandemic. Within the presented study, molecular docking, ADME properties and all-atom molecular dynamic (MD) simulation, along with two standard antiviral agents (lopinavir and benzopurpurin-4B), were applied to investigate 15 scalaranes sesterterpenes natural compounds, purified from the Red Sea marine sponge Hyrtios erectus, as potential COVID-19 dual-target inhibitors. Following multi-step docking within COVID-19 main protease and Nsp15 endoribonuclease cavities, nine promising drug-like compounds exhibited higher docking scores as well as better interactions with the target’s crucial residues than those of reference ligands. Compounds 2, 6, 11, and 15, were predicted to simultaneously subdue the activity of the two COVID-19 targets. Dynamics behavior of the best-docked molecules, compounds 15 and 6, within COVID-19 target pockets showed substantial stability of ligand-protein complexes as presented via several MD simulation parameters. Furthermore, calculated free-binding energies from MD simulation illustrated significant ligand’s binding affinity towards respective target pockets. All provided findings supported the utility of scalarane-based sesterterpenes, particularly compounds 15 and 6, as promising lead candidates guiding the development of effective therapeutics against SARS-CoV-2.


2021 ◽  
Author(s):  
Satyajit Beura ◽  
Chetti Prabhakar

The emergence of a zoonotic pathogen causing disease entitled as novel coronavirus disease 2019 (COVID-19) which keeps rapid spreading and has become a pandemic threat for the entire world. Right now no medications are approved for coronaviral infection, albeit some of the medications have been attempted. Chloroquine, hydroxychloroquine, remdesivir, favipiravir, lopinavir and ritonavir are broadly used for the treatment of COVID-19. To study the interactions of glutathione with COVID-19 main protease and spike glycoprotein, computational approaches like molecular docking and molecular dynamics (MD) simulation studies are explored. The ligand-receptor interactions of glutathione-Mpro (PDB: 6LU7) and glutathione-spike glycoprotein (PDB: 6VSB) complexes were explored by using molecular docking tools. Further glutathione-Mpro complex was subjected to MD simulation study. MD simulation results shows the protein stability by exploring the RMSD and RMSF of the protein. The MD simulation also shows ligand-protein interactions as well as ligand properties. The present study concludes that glutathione shows better interactions with COVID-19 main protease in comparison to the above mentioned drugs which were used for the treatment of SARS-CoV-2.


2018 ◽  
Vol 18 (18) ◽  
pp. 1572-1587
Author(s):  
Nehad A. Abdel Latif ◽  
Rasha Z. Batran ◽  
Salwa F. Mohamed ◽  
Mohammed A. Khedr ◽  
Mohamed I. Kobeasy ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2071
Author(s):  
Syed Sayeed Ahmad ◽  
Meetali Sinha ◽  
Khurshid Ahmad ◽  
Mohammad Khalid ◽  
Inho Choi

Alzheimer’s disease (AD) is the most common type of dementia and usually manifests as diminished episodic memory and cognitive functions. Caspases are crucial mediators of neuronal death in a number of neurodegenerative diseases, and caspase 8 is considered a major therapeutic target in the context of AD. In the present study, we performed a virtual screening of 200 natural compounds by molecular docking with respect to their abilities to bind with caspase 8. Among them, rutaecarpine was found to have the highest (negative) binding energy (−6.5 kcal/mol) and was further subjected to molecular dynamics (MD) simulation analysis. Caspase 8 was determined to interact with rutaecarpine through five amino acid residues, specifically Thr337, Lys353, Val354, Phe355, and Phe356, and two hydrogen bonds (ligand: H35-A: LYS353:O and A:PHE355: N-ligand: N5). Furthermore, a 50 ns MD simulation was conducted to optimize the interaction, to predict complex flexibility, and to investigate the stability of the caspase 8–rutaecarpine complex, which appeared to be quite stable. The obtained results propose that rutaecarpine could be a lead compound that bears remarkable anti-Alzheimer’s potential against caspase 8.


Sign in / Sign up

Export Citation Format

Share Document