Experimental-Structural study, Raman spectroscopy, UV‐visible, and Impedance characterizations of Ba0.97La0.02Ti0.9Nb0.08O3 polycrystalline sample

2021 ◽  
pp. 131539
Author(s):  
Ch. Rayssi ◽  
Marwa Jebli ◽  
J. Dhahri ◽  
M. Ben Henda
2012 ◽  
Vol 192 ◽  
pp. 356-359 ◽  
Author(s):  
Ye Wu ◽  
Qian Zhang ◽  
Xiang Wu ◽  
Shan Qin ◽  
Jing Liu

1992 ◽  
Vol 11 (15) ◽  
pp. 1060-1062 ◽  
Author(s):  
L. Koudelka ◽  
L. Tichy ◽  
M. Pisarcik

2021 ◽  
Vol 324 ◽  
pp. 87-93
Author(s):  
Mohamed Adel ◽  
Abdel Hady A. Abdel-Wahab ◽  
Ahmed Abdel-Mawgood ◽  
Ahmed Osman Egiza

Graphene oxide (GO) is an oxidized nanosheets of graphite with a 2D planar structure. GO could be readily complexed with bio-entities as it possesses many oxygen-containing functionalities on its surface. The preparation process is fast, easy, and cost-effective. It was prepared using modified Hummers’ method in acidic solution as a primary solvent and potassium permanganate as an oxidizing agent. Afterwards, it was successfully characterized by FTIR, UV-visible spectroscopy, as well as XRD and Raman spectroscopy, and finally, SEM analysis. It was observed that the formed GO is mainly composed of carbon and oxygen elements rich in oxygen functional groups. Furthermore, the existence of (001) plane in XRD interprets the complete oxidation of graphite with d-spacing 9 Å. Moreover, Raman spectroscopy displayed the sp3 carbon hybridization, besides, the ID/IG ratio is found to be 0.84, which confirms the disorder between graphene oxide layers. The SEM images also pointed out that graphene oxide sheets were regularly stacked together as flake-like structures. Accordingly, the richness of oxygen-containing functionalities was confirmed. Hence, it is appropriate to be used as a base transducer for biosensing applications.


Author(s):  
Naveen Thakur ◽  
Nikesh Thakur ◽  
Viplove Bhullar ◽  
Saurabh Sharma ◽  
Aman Mahajan ◽  
...  

Abstract Titanium dioxide (TiO2) nanofibers were synthesized by electrospinning to optimize the photocatalytic action efficiency. The synthesis of the fibers was carried out at four different wt% concentrations: 8, 9, 10 & 11% of polymer polyvinylpyrrolidone (PVP). The TiO2 fibers were further calcined at 700 °C to get powder form. The uncalcinated and calcined TiO2 nanofibers were characterized by using X-Ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) and UV-Visible spectroscopy. Raman spectroscopy confirmed the rutile phase of the calcined TiO2nanofibers in powder form with a crystallite size of 34–38 nm. The surface morphology of the uncalcinated and calcined TiO2 nanofibers was examined by SEM and the fiber diameter found to be 360–540 nm. The optical bandgap of the calcined TiO2 nanofibers was found in the range of 3.29–3.24 eV. The photocatalytic activity of the TiO2 nanofibers as examined for uncalcinated and calcined nanofibers, methyl orange (MO) dye degraded up to 98 and 78%, respectively in 180 min under the exposure of UV light. Uncalcinated TiO2 nanofibers were found more suitable for degradation of MO dye as compared to calcined nanofibers.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


Author(s):  
V. Califano ◽  
B. Champagnon ◽  
E. Fanelli ◽  
P. Pernice ◽  
V. Sigaev ◽  
...  

2015 ◽  
Vol 1102 ◽  
pp. 57-62 ◽  
Author(s):  
Rafaella F. Fernandes ◽  
Gilson R. Ferreira ◽  
Adriano A. Spielmann ◽  
Howell G.M. Edwards ◽  
Luiz Fernando C. de Oliveira

Sign in / Sign up

Export Citation Format

Share Document