TiO2 nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light

Author(s):  
Naveen Thakur ◽  
Nikesh Thakur ◽  
Viplove Bhullar ◽  
Saurabh Sharma ◽  
Aman Mahajan ◽  
...  

Abstract Titanium dioxide (TiO2) nanofibers were synthesized by electrospinning to optimize the photocatalytic action efficiency. The synthesis of the fibers was carried out at four different wt% concentrations: 8, 9, 10 & 11% of polymer polyvinylpyrrolidone (PVP). The TiO2 fibers were further calcined at 700 °C to get powder form. The uncalcinated and calcined TiO2 nanofibers were characterized by using X-Ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) and UV-Visible spectroscopy. Raman spectroscopy confirmed the rutile phase of the calcined TiO2nanofibers in powder form with a crystallite size of 34–38 nm. The surface morphology of the uncalcinated and calcined TiO2 nanofibers was examined by SEM and the fiber diameter found to be 360–540 nm. The optical bandgap of the calcined TiO2 nanofibers was found in the range of 3.29–3.24 eV. The photocatalytic activity of the TiO2 nanofibers as examined for uncalcinated and calcined nanofibers, methyl orange (MO) dye degraded up to 98 and 78%, respectively in 180 min under the exposure of UV light. Uncalcinated TiO2 nanofibers were found more suitable for degradation of MO dye as compared to calcined nanofibers.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Akbar Ashkarran ◽  
Sima Eshghi ◽  
Mohammad Reza Nourani

We focus on the production of TiO2 nanofibers with controllable diameters using a facile electrospinning technique at room temperature. The resulting nanofibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible spectroscopy (UV-Vis). The most important electrospinning parameters including potential difference (kV), flow rate (mL/h), and the separation distance between electrodes (cm) were found to have significant influence on the diameter of the produced nanofibers. The photocatalytic performance of TiO2 nanofibers was successfully demonstrated for decolorization of Rhodamine B (Rh.B) under UV light irradiation. It was found that fiber diameter has a crucial influence on the photocatalytic performance of TiO2 nanofibers.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


2015 ◽  
Vol 1123 ◽  
pp. 227-232 ◽  
Author(s):  
Iqriah Kalim Susanto ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.


NANO ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. 1750117 ◽  
Author(s):  
Q. Zhang ◽  
S. Zhou ◽  
S. F. Fu ◽  
X. Z. Wang

2,9,16,23-tetranitrophthalocyanine zinc (TNZnPc)/TiO2 organic–inorganic heterostructures were successfully fabricated by a simple combination method of electrospinning technique and solvothermal processing. These photocatalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV–Vis, energy dispersive X-ray and X-ray photoelectron spectroscopy. The photocatalytic studies revealed that the TNZnPc/TiO2 organic–inorganic heterostructures exhibited enhanced photocatalytic efficiency of photodegradation of rhodamine B compared with pure TiO2 nanofibers under visible-light irradiation. Further studies indicate that the photosynergistic effect of organic–inorganic heterostructures can remarkably enhance the photoinduced interfacial charge transfer, thereby increasing the charge separation during the photocatalytic reaction.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. S. Ibraheam ◽  
Y. Al-Douri ◽  
Nabeel Z. Al-Hazeem ◽  
U. Hashim ◽  
Deo Prakash ◽  
...  

The Cu2Zn1−xCdxSnS4quinternary alloy nanofibres with different Cd concentrations were grown on glass substrate using the electrospinning technique. The structural properties of Cu2Zn1−xCdxSnS4quinternary alloy nanofibres were investigated by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). Optical properties were analysed through UV-visible spectrophotometry (UV-Vis) and photoluminescence (PL) spectroscopy, which revealed that there is a decrease in band gap from 1.75 eV to 1.61 eV, with the increasing Cd concentration fromx= 0 tox= 1. The current-voltage measurements exhibited a power conversion efficiency of 3% under the solar illumination with intensity of 100 mW/cm2. Electrical properties supported that the Cu2Zn1−xCdxSnS4quinternary alloy can be used as an absorber in solar cells. The bulk modulus, refractive index, and dielectric constant were also investigated.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750072 ◽  
Author(s):  
Junshu Wu ◽  
Linlin Wang ◽  
Jinshu Wang ◽  
Yucheng Du ◽  
Yongli Li

This paper reports the synthesis of MgO-based nanosheets loaded with UV-light absorbed, wurtzite ZnxMg[Formula: see text]O nanoparticles based on calcining Zn[Formula: see text]-adsorbed Mg(OH)2 precursor, as evidenced by X-ray diffraction, UV-visible, X-ray photoelectron spectroscopy analyses, etc. The surface modification of magnesium oxide (MgO) sheet-like adsorbents by Zn–Mg–O alloys generates photocatalytic activity for the degradation removal of cationic dye Rhodamine B and anionic dye methyl orange under UV light irradiation. These findings provide a route to chemically controlled synthesis of new and highly robust MgO–ZnxMg[Formula: see text]O materials for water purification. The endowed photocatalysis function of MgO makes it be easily recovered via photodegradation of adsorbed dyes rather than high-temperature calcination, thus extending the applications of MgO in dye wastewater treatment.


2011 ◽  
Vol 236-238 ◽  
pp. 3024-3027
Author(s):  
Vatcharinkorn Mekla ◽  
Supakorn Pukird ◽  
Supanit Porntheerapat ◽  
Jiti Nukeaw

The report presents the effects of the thickness on the TiO2 thin films prepared by the GLAD technique with incline spinning substrate on rotating holder (ISSRH) by using the electron beam evaporation. The prepared films were heated at 500 °C for 2 hr in air. The microstructure of films was investigated by UV- visible photometer, X-ray diffraction, XRD and field emission scanning electron microscope, FE-SEM. The results showed the thickness of 10, 50, 100 and 300 nm films exhibited continuity distribution of the crystalline. The crystalline structure evidenced the dominant peak at the 300 nm thickness. GLAD TiO2 films exhibited the columnar growth and porosity. The TiO2 nanostructures showed rutile phase.


2014 ◽  
Vol 936 ◽  
pp. 123-126
Author(s):  
Shuai Chen ◽  
Yun Ze Long ◽  
Hong Di Zhang ◽  
Shu Liang Liu ◽  
Ling Zhi Liu ◽  
...  

Ultrathin indium oxide (In2O3) microtubes were successfully fabricated by electrospinning, magnetron sputtering and followed calcination. The hollow In2O3tubes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-visible spectroscopy. Outer diameter of the microtubes was in the range of 700-900 nm, and inner diameter was about 400-600 nm. Optoelectronic properties of the In2O3tubes were investigated by irradiation of UV light with different wavelengths (254, 308 and 365 nm). It was found that the In2O3microtubes had a fast and strong response to UV irradiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jarupat Sungpanich ◽  
Titipun Thongtem ◽  
Somchai Thongtem

The degradation of methylene blue (MB) dye by tungsten oxide (WO3) photocatalyst synthesized by the 200°C conventional-hydrothermal (C-H) and 270 W microwave-hydrothermal (M-H) methods and commercial WO3was studied under UV light irradiation for 360 min. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectrophotometry, and UV visible spectroscopy to determine phase, morphology, vibration mode, and optical property. The BET analysis revealed the specific surface area of 29.74, 37.25, and 33.56 m2/g for the C-H WO3nanoplates, M-H WO3nanoplates, and commercial WO3nanorods, respectively. In this research, the M-H WO3nanoplates have the highest photocatalytic efficiency of 90.07% within 360 min, comparing to the C-H WO3nanoplates and even commercial WO3nanorods.


Sign in / Sign up

Export Citation Format

Share Document