scholarly journals Diffusion tensor imaging fiber tracking with local tissue property sensitivity: phantom and in vivo validation

2008 ◽  
Vol 26 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Bin Chen ◽  
Allen W. Song
2016 ◽  
Vol 125 (4) ◽  
pp. 787-794 ◽  
Author(s):  
Fei Song ◽  
Yuanzheng Hou ◽  
Guochen Sun ◽  
Xiaolei Chen ◽  
Bainan Xu ◽  
...  

OBJECTIVE Preoperative determination of the facial nerve (FN) course is essential to preserving its function. Neither regular preoperative imaging examination nor intraoperative electrophysiological monitoring is able to determine the exact position of the FN. The diffusion tensor imaging–based fiber tracking (DTI-FT) technique has been widely used for the preoperative noninvasive visualization of the neural fasciculus in the white matter of brain. However, further studies are required to establish its role in the preoperative visualization of the FN in acoustic neuroma surgery. The object of this study is to evaluate the feasibility of using DTI-FT to visualize the FN. METHODS Data from 15 patients with acoustic neuromas were collected using 3-T MRI. The visualized FN course and its position relative to the tumors were determined using DTI-FT with 3D Slicer software. The preoperative visualization results of FN tracking were verified using microscopic observation and electrophysiological monitoring during microsurgery. RESULTS Preoperative visualization of the FN using DTI-FT was observed in 93.3% of the patients. However, in 92.9% of the patients, the FN visualization results were consistent with the actual surgery. CONCLUSIONS DTI-FT, in combination with intraoperative FN electrophysiological monitoring, demonstrated improved FN preservation in patients with acoustic neuroma. FN visualization mainly included the facial-vestibular nerve complex of the FN and vestibular nerve.


2019 ◽  
Vol 14 (01) ◽  
pp. e16-e23
Author(s):  
Niyazi Acer ◽  
Mehmet Turgut

Background Brachial plexus (BP) is composed of intercommunications among the ventral roots of the nerves C5, C6, C7, C8, and T1 in the neck. The in vivo and in vitro evaluation of axons of the peripheral nervous system is performed using different techniques. Recently, many studies describing the application of fiber tractography and stereological axon number estimation to peripheral nerves have been published. Methods Various quantitative parameters of nerve fibers, including axon number, density, axonal area, and myelin thickness, can be estimated using stereological techniques. In vivo three-dimensional reconstruction of axons of BP can be visualized using a combined technique of diffusion tensor imaging (DTI) and fiber tracking with the potential to evaluate nerve fiber content. Conclusion It is concluded that terminal branches of BP can be successfully visualized using DTI, which is a highly reproducible method for the evaluation of BP as it shows anatomical and functional features of neural structures. We believe that quantitative morphological findings obtained from BP will be useful for new experimental, developmental, and pathological studies in the future.


2013 ◽  
Vol 44 (S 01) ◽  
Author(s):  
M Breu ◽  
D Reisinger ◽  
D Wu ◽  
Y Zhang ◽  
A Fatemi ◽  
...  

2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


Radiology ◽  
2014 ◽  
Vol 272 (1) ◽  
pp. 202-209 ◽  
Author(s):  
Max Wintermark ◽  
Diane S. Huss ◽  
Binit B. Shah ◽  
Nicholas Tustison ◽  
T. Jason Druzgal ◽  
...  

NeuroImage ◽  
2010 ◽  
Vol 49 (2) ◽  
pp. 1572-1580 ◽  
Author(s):  
Laura E. Danielian ◽  
Nobue K. Iwata ◽  
David M. Thomasson ◽  
Mary Kay Floeter

Sign in / Sign up

Export Citation Format

Share Document