Effect of hydrogen on processing maps in isothermal compression of Ti–6Al–4V titanium alloy

2009 ◽  
Vol 502 (1-2) ◽  
pp. 32-37 ◽  
Author(s):  
M.Q. Li ◽  
W.F. Zhang
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2021
Author(s):  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Aneta Łukaszek-Sołek ◽  
Krystian Zyguła ◽  
Marek Wojtaszek

The flow behavior of metastable β titanium alloy was investigated basing on isothermal hot compression tests performed on Gleeble 3800 thermomechanical simulator at near and above β transus temperatures. The flow stress curves were obtained for deformation temperature range of 800–1100 °C and strain rate range of 0.01–100 s−1. The strain compensated constitutive model was developed using the Arrhenius-type equation. The high correlation coefficient (R) as well as low average absolute relative error (AARE) between the experimental and the calculated data confirmed a high accuracy of the developed model. The dynamic material modeling in combination with the Prasad stability criterion made it possible to generate processing maps for the investigated processing temperature, strain and strain rate ranges. The high material flow stability under investigated deformation conditions was revealed. The microstructural analysis provided additional information regarding the flow behavior and predominant deformation mechanism. It was found that dynamic recovery (DRV) was the main mechanism operating during the deformation of the investigated β titanium alloy.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2456
Author(s):  
Zhijun Yang ◽  
Weixin Yu ◽  
Shaoting Lang ◽  
Junyi Wei ◽  
Guanglong Wang ◽  
...  

The hot deformation behaviors of a new Ti-6Al-2Nb-2Zr-0.4B titanium alloy in the strain rate range 0.01–10.0 s−1 and temperature range 850–1060 °C were evaluated using hot compressing testing on a Gleeble-3800 simulator at 60% of deformation degree. The flow stress characteristics of the alloy were analyzed according to the true stress–strain curve. The constitutive equation was established to describe the change of deformation temperature and flow stress with strain rate. The thermal deformation activation energy Q was equal to 551.7 kJ/mol. The constitutive equation was ε ˙=e54.41[sinh (0.01σ)]2.35exp(−551.7/RT). On the basis of the dynamic material model and the instability criterion, the processing maps were established at the strain of 0.5. The experimental results revealed that in the (α + β) region deformation, the power dissipation rate reached 53% in the range of 0.01–0.05 s−1 and temperature range of 920–980 °C, and the deformation mechanism was dynamic recovery. In the β region deformation, the power dissipation rate reached 48% in the range of 0.01–0.1 s−1 and temperature range of 1010–1040 °C, and the deformation mechanism involved dynamic recovery and dynamic recrystallization.


2011 ◽  
Vol 291-294 ◽  
pp. 306-310 ◽  
Author(s):  
Gui Qing Chen ◽  
Gao Sheng Fu ◽  
Wen Duan Yan ◽  
Chao Zeng Cheng ◽  
Ze Chang Zou

The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300 °C-380 °C and 1.0-10.0 s-1. DRX occurs extensively in the temperature range of 450-500 °C and at the strain rate of 10.0 s-1. The optimum parameters of hot working for 3003 Al alloy at the strain of 0.6 are confined at 500 °C and 10.0 s-1 with the highest efficiency (37%).


2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


Rare Metals ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 86-94 ◽  
Author(s):  
Jun Gao ◽  
Miao-Quan Li ◽  
Ge-Jun Liu ◽  
Shao-Fei Liu

2010 ◽  
Vol 45 (21) ◽  
pp. 5883-5891 ◽  
Author(s):  
Kaixuan Wang ◽  
Weidong Zeng ◽  
Yongqing Zhao ◽  
Yunjin Lai ◽  
Yigang Zhou

2019 ◽  
Vol 298 ◽  
pp. 38-42
Author(s):  
Shu Yu Sun

The deformation characteristics of Ti-5Al-5Mo-5V-1Fe-1Cr alloy during isothermal compression are investigated in this work. The alloy ingot is prepared by vacuum consumable furnace first. Then, thermomechanical processing and heat treatment are carried out. The microstructure shows the characteristics of Widmanstatten structure after heat treatment. The heat-treated material is subjected to isothermal compression test. According to the comparison of the coarsening degree of α grain under different experimental parameters. It is revealed that the strain rate has the largest influence on the stress field of the alloy during isothermal deformation.


Sign in / Sign up

Export Citation Format

Share Document