Tensile deformation of 316L austenitic stainless steel using in-situ electron backscatter diffraction and crystal plasticity simulations

2015 ◽  
Vol 637 ◽  
pp. 48-55 ◽  
Author(s):  
Subhasis Sinha ◽  
Jerzy A. Szpunar ◽  
N.A.P. Kiran Kumar ◽  
N.P. Gurao
2007 ◽  
Vol 561-565 ◽  
pp. 2087-2090 ◽  
Author(s):  
Ya Ming Huang ◽  
Qiang Fu ◽  
Chun Xu Pan

Electron backscatter diffraction (EBSD) has been developed as a novel technique for characterizing crystallographic textures in recent years. The present paper proposes an “in-situ-tracking” approach using SEM and EBSD to examining the microstructural development and grain boundary variation of stainless steel during elevated 1200 °C service. The results revealed that in addition to the coarsened grains the fraction of low angle grain boundaries (LABG) became increased and flattened obviously during service. Comparing to the regular high temperature service (below 900 °C), the present “recovery and recrystallization” process was accelerated due to dislocation fastened movement and intensive interaction. However, the grain growth mechanism still meet the well-accepted dislocation model of subgrain combination.


Author(s):  
Xiao Wang ◽  
Yuetao Zhang ◽  
Huaying Li ◽  
Ming-yu Huang

Type 316 steels have been heavily utilized as the structural material in many construction equipment and infrastructures. This paper reports the characterization of degradation in 316 austenitic stainless steel during the plastic deformation. The in-situ EBSD results revealed that, with the increase of plastic strain, the band contrast (BC) value progressively decreased in both grain and grain boundaries, and the target surface becomes uneven after the plastic tensile, which indicates that the increase of surface roughness. Meanwhile, the KAM and ρGND values are low in the origin specimen but increased significantly after the in-situ tensile. The results indicated that the KAM and ρGND are closely related to the deformation degree of the materials, which can be used as the indicator for assessing the degradation of 316 steel. Besides, the re-orientation of grain occurred after the tensile deformation, which can be recognized from the lattice orientation and local orientation maps.


2007 ◽  
Vol 537-538 ◽  
pp. 297-302
Author(s):  
Tibor Berecz ◽  
Péter János Szabó

Duplex stainless steels are a famous group of the stainless steels. Duplex stainless steels consist of mainly austenitic and ferritic phases, which is resulted by high content of different alloying elements and low content of carbon. These alloying elements can effect a number of precipitations at high temperatures. The most important phase of these precipitation is the σ-phase, what cause rigidity and reduced resistance aganist the corrosion. Several orientation relationships have been determined between the austenitic, ferritic and σ-phase in duplex stainless steels. In this paper we tried to verify them by EBSD (electron backscatter diffraction).


Sign in / Sign up

Export Citation Format

Share Document