Effects of high Zn content on the microstructure and mechanical properties of Al–Zn–Cu gravity-cast alloys

2017 ◽  
Vol 679 ◽  
pp. 340-349 ◽  
Author(s):  
Sang-Soo Shin ◽  
Kyung-Mook Lim ◽  
Ik-Min Park
Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3102
Author(s):  
Tianshuo Zhao ◽  
Yaobo Hu ◽  
Fusheng Pan ◽  
Bing He ◽  
Maosheng Guan ◽  
...  

High performance Mg–6Al–3Sn–0.25Mn–xZn alloys (x = 0, 0.5, 1.0, 1.5, and 2.0 wt %) without rare earth were designed. The effects of different Zn contents on the microstructure and mechanical properties were systematically investigated. The addition of Zn obviously refines the as-cast alloys dendritic structure because of the increase in the number in the second phase. For the as-extruded alloys, an appropriate amount of Zn promotes complete recrystallization, thus increasing the grain size. As the Zn content increases, the texture gradually evolves into a typical strong basal texture, which means that the basal slip is difficult to initiate. Meanwhile, the addition of Zn promotes the precipitation of small-sized second phases, which can hinder the dislocation movement. The combination of texture strengthening and precipitation strengthening is the main reason for the improvement of alloys’ strength.


2016 ◽  
Vol 850 ◽  
pp. 511-518 ◽  
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The effects of Mg and Cu additions with different contents on the mechanical properties of Al-Si alloy prepared by indirect squeeze casting have been experimentally investigated. The microstructure and mechanical properties of as-cast and T6-treated Al-Si-Cu-Mg alloys were tested by OM, SEM, DSC and tensile measurement, where the samples were produced by artificial aging at 180°C for 8 h after solution treatment at 540°C for 4 h. It has been found that for the as-cast alloys, with increasing contents of Mg and Cu the tensile strength (UTS) and yield strength (YS) increased, while the percentage elongation (El) decreased. And the optimal mechanical properties of Al-Si-Cu-Mg alloys were obtained under the content ratio of Cu/Mg within 4, where the UTS and El reached 426 MPa and 6.3% after T6 treated, respectively.


2018 ◽  
Vol 941 ◽  
pp. 1607-1612 ◽  
Author(s):  
Shu Lin Lü ◽  
Xiong Yang ◽  
Liang Yan Hao ◽  
Shu Sen Wu

In this work, ultrasonic rheocasting was used to refine the microstructures of Mg alloys reinforced with long period stacking ordered (LPSO) phase. The semisolid slurries of Mg-Zn-Y and Mg-Ni-Y alloys were prepared by ultrasonic vibration (UV) and then formed by rheo-squeeze casting under high squeeze pressure (~ 400 MPa). The effects of UV and squeeze pressure on microstructure and mechanical properties of the Mg alloys were studied. The results reveal that UV and rheo-squeeze casting can significantly refine the LPSO structure and alpha-Mg matrix in Mg alloys, but they cannot change the phase compositions of the alloys or the type of LPSO phase. When the squeeze pressure is 400 MPa, the average thickness of LPSO phase is decreased, and the block LPSO structure is completed eliminated and uniformly distributed at the grain boundaries. Compared with the gravity cast alloys without UV, mechanical properties of the rheocast Mg alloys were enhanced and reached the maximums when the squeeze pressure was 400 MPa.


2009 ◽  
Vol 83-86 ◽  
pp. 415-420
Author(s):  
S.G. Shabestari ◽  
M.M. Hejazi ◽  
M. Bahramifar

The effect of magnesium addition up to 0.9 wt.% on the microstructure and mechanical properties of Al-9Si-0.35Mn alloy has been investigated in both as-cast and heat treated conditions. Generally, Mg addition increases the heat treatability and strength of the alloys at the expense of the lower ductility. High levels of magnesium addition, causes the formation of large and brittle intermetallics, a slight increase in porosity and hence, a decrease in ultimate tensile strength and ductility of the cast alloys. T6 heat treatment increases the strength of the alloys up to 80 percent compared to as-cast samples. Among the studied compositions, heat treated Al-9Si-0.35Mn-0.25Mg alloy, has the maximum value of quality index and can be regarded as a promising material with the optimum mechanical properties for industrial applications.


2002 ◽  
Vol 43 (9) ◽  
pp. 2193-2196 ◽  
Author(s):  
Dai Morikawa ◽  
Janakarajan Ramkumar ◽  
Hiroshi Mabuchi ◽  
Hiroshi Tsuda ◽  
Toshiyuki Matsui ◽  
...  

2012 ◽  
Vol 43 (11) ◽  
pp. 4383-4396 ◽  
Author(s):  
Pablo Pérez ◽  
Gerardo Garcés ◽  
Maria Maeso ◽  
Paloma Adeva

Sign in / Sign up

Export Citation Format

Share Document