Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening

2018 ◽  
Vol 728 ◽  
pp. 20-29 ◽  
Author(s):  
Lan Chen ◽  
Xudong Ren ◽  
Wangfan Zhou ◽  
Zhaopeng Tong ◽  
Samuel Adu-Gyamfi ◽  
...  
2020 ◽  
Vol 121 ◽  
pp. 105827 ◽  
Author(s):  
Cheng Wang ◽  
Long Wang ◽  
Chuan-Li Wang ◽  
Kun Li ◽  
Xiao-Gui Wang

Author(s):  
Bo Mao ◽  
Xing Zhang ◽  
Yiliang Liao ◽  
Bin Li

Abstract The applications of magnesium (Mg) and their alloys are often restricted by their poor formability at room temperature. Several strategies have been developed in recent years to enhance the formability of Mg alloys, such as grain refinement and texture weakening, either by alloying or processing. Laser shock peening (LSP) is an advanced laser-based surface processing method which has been utilized improve the surface hardness, fatigue performance, and corrosion resistance of Mg alloys. Recent studies show that LSP can bring significant texture weakening and grain refinement effect in Mg alloy, indicating its potential capability of enhancing the formability of Mg alloys. This research is to explore the applicability of LSP to improve the room temperature-stretch formability of Mg alloys. LSP experiments are carried out on an AZ31B Mg alloys. The microstructure before and after LSP are characterized by optical microscopy (OM) and electron backscattered diffraction (EBSD) microscopy. Erichsen tests are carried out to evaluate the stretch formability of Mg alloys. The results show that LSP can bring texture weakening and grain refinement effect simultaneously, resulting in the improved room temperature-stretch formability of Mg alloys.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3261
Author(s):  
Liang Lan ◽  
Ruyi Xin ◽  
Xinyuan Jin ◽  
Shuang Gao ◽  
Bo He ◽  
...  

Laser shock peening (LSP) is an innovative surface treatment process with the potential to change surface microstructure and improve mechanical properties of additively manufactured (AM) parts. In this paper, the influences of LSP on the microstructure and properties of Ti–6Al–4V (Ti64) titanium alloy fabricated via selective laser melting (SLM), as an attractive AM method, were investigated. The microstructural evolution, residual stress distribution and mechanical properties of SLM-built Ti64 samples were characterized before and after LSP. Results show that the SLM sample was composed of single hcp α’ phase, which deviates from equilibrium microstructure at room temperature: α + β phases. The LSP significantly refines the grains of α’ phase and produces compressive residual stress (CRS) of maximum magnitude up to −180 MPa with a depth of 250 μm. Grain refinement of α’ phase is attributed to the complex interaction of dislocations and the intersection of deformation twinning subjected to LSP treatment. The main mechanism of strength and micro-hardness enhancement via LSP is ascribed to the effects of CRS and α’ phase grain refinement.


2018 ◽  
Vol 335 ◽  
pp. 32-40 ◽  
Author(s):  
Zhaopeng Tong ◽  
Xudong Ren ◽  
Yunpeng Ren ◽  
Fengze Dai ◽  
Yunxia Ye ◽  
...  

2021 ◽  
Author(s):  
D. S. Shtereveria ◽  
A. A. Volkova ◽  
A. A. Kholopov ◽  
M. A. Melnikova ◽  
D. M. Melnikov

Sign in / Sign up

Export Citation Format

Share Document