Al matrix composites reinforced by high volume fraction of TiAl3 fabricated through combined accumulative roll-bonding processes

2019 ◽  
Vol 754 ◽  
pp. 309-317 ◽  
Author(s):  
X.Y. Yang ◽  
Q.S. Mei ◽  
X.M. Mei ◽  
Y. Ma ◽  
F. Chen ◽  
...  
2006 ◽  
Vol 313 ◽  
pp. 171-176 ◽  
Author(s):  
X.F. Gu ◽  
Lian Meng Zhang ◽  
Mei Jun Yang ◽  
Dong Ming Zhang

SiCp/Al composites containing high volume fraction of SiC particles were fabricated by spark plasma sintering (SPS), and their thermophysical properties, such as thermal conductivity (TC) and coefficient of thermal expansion (CTE), were characterized. High relative density (R-D) of composites was successfully achieved through the optimization of sintering parameters, such as sintering temperature, sintering pressure and heating rate. The measured TCs of SiCp/Al composites fabricated by SPS are higher than 195W/m.k, no matter the volume fraction of SiC particles is high or low as long as the R-D is higher than 95%. The measured CTEs of SiCp/Al composites are in good agreement with the estimated values based on Kerner,s model. The high volume fraction of SiCp/Al composites are a good candidate material to substitute for conventional thermal management materials in advanced electronic packages due to its tailorable thermophysical properties.


2012 ◽  
Vol 565 ◽  
pp. 142-147 ◽  
Author(s):  
Z.G. Dong ◽  
F.J. Ma ◽  
Ren Ke Kang ◽  
K. Su

The surface integrity of the machined components of the high volume fraction SiC particle reinforced Al composites (SiCp/Al) is important as it influences the performance of the part. The grinding experiments of 55% volume fraction SiC particles reinforced Al composite with and without ultrasonic-assisted were performed. The grinding forces were tested, on which the effects of the grinding parameters were analyzed. The surface topography of SiCp/Al after ultrasonic assisted grinding were observed, based on which the material removal mode was discussed.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1299 ◽  
Author(s):  
Hao Yang ◽  
Xin-wei She ◽  
Bin-bin Tang ◽  
Chun-mei Li ◽  
Xian-quan Jiang

Composites of 7055 aluminum (Al) matrix reinforced with SiC particles were prepared using the spray deposition method. The volume fraction of the phase reinforced with SiC particles was 17%. The effect of the introduction of SiC particles on the deposited microstructure and properties of the composites was studied in order to facilitate the follow-up study. The structure and element enrichment zone of spray-deposited SiCp/7055 Al matrix composites were studied by Optical Microscope (OM), X-ray diffraction (XRD), Scanning Electronic Microscopy (SEM) and Transmission electron microscopy (TEM). The results show that the reinforcement phases of the SiC particles were uniformly distributed on the macro and micro levels, and a few SiC particles were segregated into annular closed regions. C and Si on the surface of SiC particles diffused to the Al matrix. The distribution of the two elements was gradient weakening with SiC particles as the center, and the enrichment zones of Si, Mg and Cu formed in the middle of the closed annular area of a few SiC particles. The enrichment zones were mainly composed of alpha-Al, SiC, Al2CuMg, Al2Cu and MgZn2. AlCu and AlMgCu phase precipitate on the surface of the SiC particles, beside the particle boundary, and had the characteristics of preferred nucleation. They tended to grow at the edges and corners of SiC particles. It was observed that the formation of nanoparticles in the alloy had a pinning effect on dislocations. The different cooling rates of the SiC particles and the Al matrix led to different aluminum liquid particle sizes, ranging from 20 to 150 μm. In the region surrounded by SiC particles, the phenomenon of large particles extruding small particles was widespread. Tearing edges and cracks continued to propagate around the SiC particles, increasing their propagation journey and delaying the fracture of the materials.


2011 ◽  
Vol 295-297 ◽  
pp. 785-788 ◽  
Author(s):  
Dao Hui Xiang ◽  
Guang Xi Yue ◽  
Xin Tao Zhi ◽  
Hai Tao Liu ◽  
Bo Zhao

The orthogonal method was used for analyzing the machining performance of high volume fraction SiCp/Al metal matrix composites (SiCp/Al MMCs) during high speed milling and ultrasonic high speed milling in this paper. The influence of cutting speed, feed rate and cutting depth on 3-directional forces were investigated. The results show that the cutting forces are decreased due to the cutting mechanism of SiCp/Al MMCs is changed from brittle cutting to ductile cutting during ultrasonic high speed milling. In addition, the chips exist in forms of C-type chips because of increasing rake angles. Ultrasonic high-speed milling is a more highly effective hard cutting way compared with high speed milling.


2013 ◽  
Vol 701 ◽  
pp. 3-7
Author(s):  
Ghodratollah Roudini ◽  
Mehdi Asgharian ◽  
Morteza Khosravi

High volume fraction Aluminum/alumina-fused silica hybrid metal matrix composites containing alumina with 0, 10, 30 and 50 wt% fused silica were produced by melt squeezing casting method. Microstructure of hybrid composite was investigated by optical microscope and scanning electron microscopy (SEM). The SEM images showed uniform distribution of fused silica particles in composite microstructure. Also compressive strength of the composites changed (310-110 MPa) with amount of fused silica.


Sign in / Sign up

Export Citation Format

Share Document