Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4 PH stainless steel laser powder-bed fusion parts

2019 ◽  
Vol 756 ◽  
pp. 98-107 ◽  
Author(s):  
Usman Ali ◽  
Reza Esmaeilizadeh ◽  
Farid Ahmed ◽  
Dyuti Sarker ◽  
Waqas Muhammad ◽  
...  
Author(s):  
C. Taute ◽  
H. Möller ◽  
A. du Plessis ◽  
M. Tshibalanganda ◽  
M. Leary

SYNOPSIS Additive manufacturing can be used to produce complex and custom geometries, consolidating different parts into one, which in turn reduces the required number of assemblies and allows distributed manufacturing with short lead times. Defects, such as porosity and surface roughness, associated with parts manufactured by laser powder bed fusion, can severely limit industrial application. The effect these defects have on corrosion and hence long-term structural integrity must also be taken into consideration. The aim of this paper is to report on the characterization of porosity in samples produced by laser powder bed fusion, with the differences in porosity induced by changes in the process parameters. The alloy used in this investigation is AlSi10Mg, which is widely used in the aerospace and automotive industries. The sample characteristics, obtained by X-ray tomography, are reported. The design and production of additively manufactured parts can be improved when these defects are better understood. Keywords: additive manufacturing, L-PBF, AlSi10Mg, porosity, surface roughness, density.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 731 ◽  
Author(s):  
Zitelli ◽  
Folgarait ◽  
Di Schino

In this paper, the capability of laser powder bed fusion (L-PBF) systems to process stainless steel alloys is reviewed. Several classes of stainless steels are analyzed (i.e., austenitic, martensitic, precipitation hardening and duplex), showing the possibility of satisfactorily processing this class of materials and suggesting an enlargement of the list of alloys that can be manufactured, targeting different applications. In particular, it is reported that stainless steel alloys can be satisfactorily processed, and their mechanical performances allow them to be put into service. Porosities inside manufactured components are extremely low, and are comparable to conventionally processed materials. Mechanical performances are even higher than standard requirements. Micro surface roughness typical of the as-built material can act as a crack initiator, reducing the strength in both quasi-static and dynamic conditions.


2020 ◽  
Vol 32 ◽  
pp. 100981 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Sreekar Karnati ◽  
Ming C. Leu ◽  
Joseph W. Newkirk

2019 ◽  
Vol 163 ◽  
pp. 51-56 ◽  
Author(s):  
X. Wang ◽  
J.A. Muñiz-Lerma ◽  
O. Sanchez-Mata ◽  
M. Attarian Shandiz ◽  
N. Brodusch ◽  
...  

2021 ◽  
pp. 111485
Author(s):  
L.F. Kultz Unti ◽  
L.S. Aota ◽  
A.L. Jardini ◽  
A.P. Tschiptschin ◽  
H.R.Z. Sandim ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


Sign in / Sign up

Export Citation Format

Share Document