Relationship and mechanism between double cold rolling-aging process, microstructure and properties of Cu–Ni–Si alloy prepared by two-phase zone continuous casting

2020 ◽  
Vol 797 ◽  
pp. 140148
Author(s):  
Wanneng Liao ◽  
Xuefeng Liu ◽  
Yaohua Yang
Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2013 ◽  
Author(s):  
Chen Shi ◽  
Gaofeng Fan ◽  
Xuqiang Mao ◽  
Daheng Mao

In order to achieve the industrial application of ultrasonic energy in the continuous casting and rolling production of aluminum alloy, a new type of L-shaped ultrasonic rod was used to introduce an ultrasonic bending vibration into the aluminum melt in the launder during the horizontal twin-roll continuous casting and rolling process of a 1060 aluminum alloy. The effects of the ultrasonic bending vibration on the microstructure and properties of the 1060 aluminum alloy cast rolling strip and its subsequent cold rolling strip were studied experimentally, and the effect of the ultrasonic-assisted refining with different amounts of Al-Ti-B refiner was explored. The results show that under the same addition amount of Al-Ti-B refiner, the ultrasonic bending vibration can refine the grains of the cast rolling strip, make the distribution of precipitates more uniform, reduce the slag inclusion defects, and improve the mechanical properties to a certain extent. The microstructure and properties of the ultrasonic cast rolling strip with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip, but the microstructure and properties of the ultrasonic cast rolling strip with 0.09 wt% Al-Ti-B refiner are slightly worse than those of the conventional cast rolling strip. Moreover, after cold rolling, the effect of the ultrasonic bending vibration on the improvement of the microstructure and properties of the aluminum alloy strip is inherited. A comprehensive analysis shows that the use of ultrasonic energy in this paper cannot completely replace the effect of the Al-Ti-B refiner, but it can reduce the addition amount of the Al-Ti-B refiner by 1/3.


2016 ◽  
Vol 16 (1) ◽  
pp. 33-40 ◽  
Author(s):  
J. Luo ◽  
X. Liu ◽  
X. Wang

Abstract Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along the wall of the mold and flows upward in the center.


2013 ◽  
Vol 23 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Xuefeng Liu ◽  
Jihui Luo ◽  
Xiaochen Wang ◽  
Lin Wang ◽  
Jianxin Xie

2016 ◽  
Vol 850 ◽  
pp. 610-617 ◽  
Author(s):  
Ji Hui Luo ◽  
Xue Feng Liu ◽  
Lai Xin Shi ◽  
Chang Fei Cheng

Surface segregation exists in two-phase zone continuous casting (TZCC) alloy with wide solid–liquid two phase zone. The surface segregation formation cannot be explained by the traditional solidification theories. ProCAST software was used to simulate the TZCC process for preparing the Cu–4.7 wt%Sn alloy with wide solid–liquid two phase zone. The Sn solute distribution in TZCC Cu–4.7 wt%Sn alloy was investigated, and the surface segregation mechanism of TZCC Cu–4.7 wt%Sn alloy was analyzed. The results showed that numerical simulation results were agreed with that of experimental. TZCC Cu–4.7 wt%Sn alloy in the center firstly started to solidify and resulted in “Λ” shape inclined solid/liquid (S/L) interface near the mold. Therefore, a narrow gap between the wall of the two-phase zone mold and the S/L interface formed. On the one hand, while Cu–4.7 wt%Sn alloy solidified along the opposite continuous casting direction, the solute redistribution between the solid and the liquid occurred, which lead to Sn solute decreased in solid and enriched in front of S/L interface. Because the narrow gap lies in front of inclined S/L interface near the two-phase zone mold, Sn solute enriches in liquid of the narrow gap. On the other hand, during the TZCC process, solid grains nucleate on the wall of the two-phase zone mold, while the melt feeds into the two-phase zone mold which the temperature is in the two-phase zone of the Cu–4.7 wt%Sn alloy. The solute redistribution also occurs while the solid grains grow, thus lead to Sn content increases in front of S/L interface near the wall of the two-phase zone mold. The enriched Sn solute is too late to diffuse, and will quickly flows into the narrow gap, resulting in further increasing of Sn content in the narrow gap. The liquid with enriched Sn solute in the narrow gap will become the surface layer after solidification, which lead to surface segregation layer during the TZCC Cu–4.7 wt%Sn alloy.


Sign in / Sign up

Export Citation Format

Share Document