scholarly journals Comparative study of the microstructure between a laser beam melted 17-4PH stainless steel and its conventional counterpart

Author(s):  
N. Guennouni ◽  
A. Barroux ◽  
C. Grosjean ◽  
D. Maisonnette ◽  
E. Nivet ◽  
...  
Coatings ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 51 ◽  
Author(s):  
Ronny Gouveia ◽  
F. Silva ◽  
Pedro Reis ◽  
A. Baptista

2016 ◽  
Vol 1140 ◽  
pp. 312-319 ◽  
Author(s):  
Patrick Schmitz

The transition towards renewable energy implicates more decentralized and time-dependent ways of energy generation. In order to deal with the resulting fluctuation in energy supply, local storage systems are necessary. Larger systems may consist of thousands of battery cells. Therefore, the reliable interconnection between the individual battery cells is the basic prerequisite for the production of these systems. It has been demonstrated that laser beam welding is a suitable process for the contacting of batteries. However, due to the high requirements regarding the heat input and the reproducibility of the joining process, further investigations are necessary. Within this work, experiments on pulsed laser beam welding of nickel-plated DC04 steel were conducted. Four different pulsed welding strategies were analyzed in a preliminary study in order to develop a method for obtaining suitable process parameters while reducing the amount of free parameters. Subsequently, a comparative study between the rectangular pulse, the shaped pulse, the spike pulse and the sloping pulse was carried out. The weld seam properties as well as the electrical and the mechanical properties of the connection joints were evaluated. The results presented in this paper indicate a high eligibility of pulsed laser beam welding as a joining process for the connection of battery cells. For all analyzed pulsed welding strategies a homogeneous weld seam without full penetration was observed. Similar electrical resistances for all strategies were measured despite the comparatively small total joint area for the discretely pulsed weld seams.


Author(s):  
Moo-Keun Song ◽  
Jong-Do Kim ◽  
Dong-Sig Shin ◽  
Su-Jin Lee ◽  
Dae-Won Cho

In this study, the parameters for underwater laser cutting of 50-mm thick stainless steel, which is typically used in nuclear power structures, are investigated. The focal position of laser beam significantly affects the cutting quality. In particular, in the cutting of the thick sample, change in the focal position determines the kerf width and the roughness of the cut surface. Moreover, the effects of the variation of kerf width and the cut surface characteristics on the focal position of the laser beam are investigated. As the focal position moved to the inside of the material, the upper kerf width increased, but the quality of the cut surface was improved.


Sign in / Sign up

Export Citation Format

Share Document