scholarly journals Detwinning of face-centered cubic deformation twins at liquid nitrogen temperature

Author(s):  
M.J. Szczerba ◽  
S. Sumara ◽  
M. Faryna ◽  
M.S. Szczerba
2016 ◽  
Vol 104 ◽  
pp. 52-61 ◽  
Author(s):  
M.J. Szczerba ◽  
S. Kopacz ◽  
M.S. Szczerba

2011 ◽  
Vol 683 ◽  
pp. 95-102 ◽  
Author(s):  
Hao Yang ◽  
Peng Yang ◽  
Jing Mei Tao ◽  
Cai Ju Li ◽  
Xin Kun Zhu

Sacking fault energy (SFE) is the key role in solving this problem of getting high strength and expected ductility simultaneously. This work adds Al as the procedure of decreasing SFE in Cu face-centered cubic. It is an economic and effective method to counterpart Cold-rolling at liquid nitrogen temperature to get high density deformation twin and ultrafine-grains size. After undergoing tensile and X-ray diffraction tests, Cu-4.5 wt.% Al plays the best performance on both strength and ductility. Thus there exist the optimal SFE of Cu-Al alloys which get both high strength and expected ductility simultaneously.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Siling Huang ◽  
Leilei Chen ◽  
Zhanwei Zhu ◽  
Dongming Guo

Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Sign in / Sign up

Export Citation Format

Share Document