scholarly journals Evolution of IMC layer and its reinforcing effect in 2024/MB8 dissimilar joints using a multi-interlayer of Cu/Zn via U-TLP bonding

Author(s):  
Yinan Li ◽  
Jie Li ◽  
Zilong Peng ◽  
Binjiang Lv ◽  
Ning Cui ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arun M. ◽  
Muthukumaran M. ◽  
Balasubramanian S.

Purpose Dissimilar materials found applications in the structural fields to withstand the different types of loads and provide multi-facet properties to the final structure. Aluminum alloy materials are mostly used in aerospace and marine industries to provide better strength and safeguard the material from severe environmental conditions. The purpose of this study is to develop new material with superior strength to challenge the severe environmental conditions. Design/methodology/approach In the present investigation, friction stir welding (FSW) dissimilar joints were prepared from AA6061 and AA5083 aluminum alloys, and the weld nugget (WN) was reinforced with hard reinforcement particles such as La2O3 and CeO2. The tribological and mechanical properties of the prepared materials were tested to analyze the suitability of material in the aerospace and marine environmental conditions. Findings The results showed that the AA6061–AA5083/La2O3 material exhibited better mechanical and tribological characteristics. The FSW dissimilar AA6061–AA5083/La2O3 material exhibited lower wear rate of 7.37 × 10−3 mm3/m and minimum friction coefficient of 0.31 compared to all other materials owing to the reinforcing effect of La2O3 particles and the fine grains formed by FSW process at WN region. Further, FSW dissimilar AA6061–AA5083/La2O3 material displayed a maximum tensile strength and hardness of 378 MPa and 118 HV, respectively, among all the other materials tested. Originality/value This work is original and novel in the field of materials science engineering focusing on tribological characteristics of friction stir welded dissimilar aluminum alloys by the reinforcing effect of hard particles such as La2O3 and CeO2.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 876 ◽  
Author(s):  
Sónia Simões

The prospect of joining titanium alloys to advanced ceramics and producing components with extraordinary and unique properties can expand the range of potential applications. This is extremely attractive in components for the automotive and aerospace industries where combining high temperature resistance, wear resistance and thermal stability with low density materials, good flowability and high oxidation resistance is likely. Therefore, a combination of distinct properties and characteristics that would not be possible through conventional production routes is expected. Due to the differences between the coefficients of thermal expansion (CTE) and Young's modulus of metals and ceramics, the most appropriate methods for such dissimilar bonding are brazing, diffusion bonding, and transient liquid phase (TLP) bonding. For the joining of titanium alloys to ceramics, brazing appears to be the most promising and cost-effective process although diffusion bonding and TLP bonding have clear advantages in the production of reliable joints. However, several challenges must be overcome to successfully produce these dissimilar joints. In this context, the purpose of this review is to point out the same challenges and the most recent advances that have been investigated to produce reliable titanium alloys and ceramic joints.


Sign in / Sign up

Export Citation Format

Share Document