In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites

2015 ◽  
Vol 46 ◽  
pp. 1-9 ◽  
Author(s):  
Lijun Ji ◽  
Wenjun Wang ◽  
Duo Jin ◽  
Songtao Zhou ◽  
Xiaoli Song
2016 ◽  
Vol 55 (6) ◽  
pp. 228-238 ◽  
Author(s):  
Vikash Kumar Vyas ◽  
Arepalli Sampath Kumar ◽  
Akher Ali ◽  
Sunil Prasad ◽  
Pradeep Srivastava ◽  
...  

2015 ◽  
Vol 47 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Y. Cao ◽  
B. Yang ◽  
C. Gao ◽  
P. Feng ◽  
C. Shuai

As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS). It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43?0.87 MPa and 1.14?0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF), which was further evaluated by Fourier transform infrared spectroscopy (FTIR). Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.


2020 ◽  
Vol 44 (44) ◽  
pp. 19227-19237
Author(s):  
Jin Qi ◽  
Tianyao Zhang ◽  
Jianping Xiao ◽  
Qianmao Zhang ◽  
Chengdong Xiong

The new biodegradable PLGA/PTMC/YDH-NBG composite with excellent mechanical properties and good in vitro bioactivity.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 618
Author(s):  
Tzu-Yu Peng ◽  
Pei-Yun Tsai ◽  
May-Show Chen ◽  
Yuichi Mine ◽  
Shan-Hua Wu ◽  
...  

Mesoporous bioactive glass (MBG) has a high specific surface area, promoting the reaction area, thereby improving the bioactivity; thus, MBG is currently gaining popularity in the biomaterial field. Spray pyrolysis (SP) is a one-pot process that has the advantages of shorter process time and better particle bioactivity, therefore, MBG was prepared by SP process with various polyethylene glycol (PEG, molecular weight ranged from 2000–12,000) and acid (HCl and CH3COOH) additions. In vitro bioactivity and mesoporous properties of the so-obtained MBG were investigated. The experimental results showed that all the MBG exhibited amorphous and mesoporous structure. Increasing the molecular weight of PEG can improve the mesoporous structure and bioactivity of MBG. Whereas optimized MBG was prepared with suitable concentration of PEG and CH3COOH. In the present work, MBG synthesized via spray pyrolysis by adding 5 g of PEG with a molecular weight of 12,000 and 50 mL of CH3COOH exhibited the best in vitro bioactivity and mesoporous structure.


Author(s):  
Wen-Fan Chen ◽  
Yu-Sheng Tseng ◽  
Yu-Man Chang ◽  
Ji Zhang ◽  
Yun-Han Su ◽  
...  

2011 ◽  
Vol 62 (1) ◽  
pp. 118-129 ◽  
Author(s):  
Xanthippi Chatzistavrou ◽  
Nikolaos Kantiranis ◽  
Eleana Kontonasaki ◽  
Konstantinos Chrissafis ◽  
Labrini Papadopoulou ◽  
...  

2016 ◽  
Vol 103 ◽  
pp. 10-24 ◽  
Author(s):  
A.R. Rafieerad ◽  
A.R. Bushroa ◽  
B. Nasiri-Tabrizi ◽  
J. Vadivelu ◽  
S. Baradaran ◽  
...  

2012 ◽  
Vol 8 (6) ◽  
pp. 2331-2339 ◽  
Author(s):  
S. Fagerlund ◽  
J. Massera ◽  
N. Moritz ◽  
L. Hupa ◽  
M. Hupa

Sign in / Sign up

Export Citation Format

Share Document