Bone regeneration of hollow tubular magnesium‑strontium scaffolds in critical-size segmental defects: Effect of surface coatings

2019 ◽  
Vol 100 ◽  
pp. 297-307 ◽  
Author(s):  
W. Wang ◽  
K.C. Nune ◽  
L. Tan ◽  
N. Zhang ◽  
J. Dong ◽  
...  
Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 180 ◽  
Author(s):  
Rodolfo Mauceri ◽  
Denise Murgia ◽  
Orazio Cicero ◽  
Luigi Paternò ◽  
Luca Fiorillo ◽  
...  

The management of critical-size bone defects is still demanding. Recently, autologous platelet concentrates in combination with bone substitute have been applied and reported in a few studies. Our aim is to report the healing of a critical-size alveolar bone defect treated with a new bone regeneration technique by means of L-PRF and L-PRF blocks. A 45-year-old woman presented a large cystic lesion; the extraction of three teeth, a cyst removal procedure, and bone regeneration procedures with L-PRF and L-PRF blocks were planned. The L-PRF block was prepared by mixing a bone substitute with a piece of L-PRF membrane and liquid fibrinogen. Additionally, after bone healing an implant-based rehabilitation was optimally performed. On the basis of the positive results, in terms of bone healing and tissue regeneration in a large bone defect, the application of L-PRF and L-PRF blocks, in agreement with the scarce literature, is suggested as a feasible procedure in selected cases.


2015 ◽  
Vol 103 (10) ◽  
pp. 3397-3406 ◽  
Author(s):  
Suzane C. Pigossi ◽  
Guilherme J. P. L. de Oliveira ◽  
Livia S. Finoti ◽  
Rafael Nepomuceno ◽  
Luis Carlos Spolidorio ◽  
...  

2015 ◽  
Vol 41 (5) ◽  
pp. 543-549 ◽  
Author(s):  
Philip J. DeNicolo ◽  
M. Kelly Guyton ◽  
Michael F. Cuenin ◽  
Steven D. Hokett ◽  
Mohamed Sharawy ◽  
...  

Platelet-rich plasma (PRP) is an autogenous source of growth factors shown to facilitate human bone growth. Bio-Oss, an osteoconductive xenograft, is used clinically to regenerate periodontal defects, restore dental alveolar ridges, and facilitate sinus-lift procedures. The purpose of this study was to analyze whether a combination of PRP and Bio-Oss would enhance bone regeneration better than either material alone. PRP and/or Bio-Oss were administered in an 8-mm critical-size defect (CSD) rat calvarial model of bone defect between 2 polytetrafluoroethylene membranes to prevent soft tissue incursion. Eight weeks after the induction of the CSD, histologic sections were stained with hematoxylin and eosin stain and analyzed via light microscopy. Qualitative analyses revealed new bone regeneration in all 4 groups. The Bio-Oss and PRP plus Bio-Oss groups demonstrated greater areas of closure in the defects than the control or PRP-only groups because of the space-maintaining ability of Bio-Oss. The groups grafted with Bio-Oss showed close contact with new bone growth throughout the defects, suggesting a stronger graft. The use of PRP alone or in combination with Bio-Oss, however, did not appear to enhance osseous regeneration at 8 weeks. Areas grafted with Bio-Oss demonstrated greater space-maintaining capacity than controls, and PRP was an effective vehicle for placement of the Bio-Oss. However, at 8 weeks this study was unable to demonstrate a significant advantage of using PRP plus Bio-Oss over using Bio-Oss alone.


2010 ◽  
Vol 63 (11) ◽  
pp. 1096-1099 ◽  
Author(s):  
Caizhi Zhou ◽  
S. Biner ◽  
Richard LeSar

Sign in / Sign up

Export Citation Format

Share Document