Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications

2020 ◽  
Vol 116 ◽  
pp. 111180 ◽  
Author(s):  
Sonja Baumgartner ◽  
Robert Gmeiner ◽  
Julia Anna Schönherr ◽  
Jürgen Stampfl
2021 ◽  
Vol 107 ◽  
pp. 102824
Author(s):  
Ana Carolina Cadore-Rodrigues ◽  
Renan Vaz Machry ◽  
Thiago Augusto de Lima Burgo ◽  
Andressa Borin Venturini ◽  
Liliana Gressler May ◽  
...  

2018 ◽  
Vol 44 (2) ◽  
pp. 1589-1593 ◽  
Author(s):  
Dongdong Qian ◽  
Lei Zhang ◽  
Ying Zhang ◽  
Pingying Liu ◽  
Xizhang Wang ◽  
...  

2008 ◽  
Vol 396-398 ◽  
pp. 153-156 ◽  
Author(s):  
Xanthippi Chatzistavrou ◽  
E. Hatzistavrou ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
Eleana Kontonasaki ◽  
...  

The aim of this study was the fabrication using a sol-gel technique of a new glass-ceramic with potential use in dental applications. The characterization of the composition and microstructural properties of the produced material confirmed the similarity between the new sol-gel derived glass-ceramic and a commercial leucite based fluorapatite dental glass-ceramic. The produced material has potential application in dental restorations and it is expected to exhibit better control of composition, microstructure and properties due to the intrinsic advantages of the sol-gel preparation method.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Abu Hasna ◽  
Stephanie Semmelmann ◽  
Fernanda Alves Feitosa ◽  
Danilo De Souza Andrade ◽  
Franklin R Tay ◽  
...  

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.


Sign in / Sign up

Export Citation Format

Share Document