Physicochemical interactions between polyaniline and graphene oxide: the reasons for the stability of their chemical structure and thermal properties

2021 ◽  
Vol 22 ◽  
pp. 100627
Author(s):  
M. Gandara ◽  
C. Dalmolin ◽  
E.S. Gonçalves
Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Maria Raposo ◽  
Carlota Xavier ◽  
Catarina Monteiro ◽  
Susana Silva ◽  
Orlando Frazão ◽  
...  

Thin graphene oxide (GO) film layers are being widely used as sensing layers in different types of electrical and optical sensor devices. GO layers are particularly popular because of their tuned interface reflectivity. The stability of GO layers is fundamental for sensor device reliability, particularly in complex aqueous environments such as wastewater. In this work, the stability of GO layers in layer-by-layer (LbL) films of polyethyleneimine (PEI) and GO was investigated. The results led to the following conclusions: PEI/GO films grow linearly with the number of bilayers as long as the adsorption time is kept constant; the adsorption kinetics of a GO layer follow the behavior of the adsorption of polyelectrolytes; and the interaction associated with the growth of these films is of the ionic type since the desorption activation energy has a value of 119 ± 17 kJ/mol. Therefore, it is possible to conclude that PEI/GO films are suitable for application in optical fiber sensor devices; most importantly, an optical fiber-based interrogation setup can easily be adapted to investigate in situ desorption via a thermally stimulated process. In addition, it is possible to draw inferences about film stability in solution in a fast, reliable way when compared with the traditional ones.


2015 ◽  
Vol 16 (12) ◽  
pp. 2617-2626 ◽  
Author(s):  
Jian Gao ◽  
Jinhong Yu ◽  
Xinfeng Wu ◽  
Baolin Rao ◽  
Laifu Song ◽  
...  

2018 ◽  
Vol 935 ◽  
pp. 134-139 ◽  
Author(s):  
Timur A. Borukaev ◽  
A.Kh. Malamatov ◽  
M.K. Vindizheva ◽  
A.V. Orlov ◽  
S.G. Kiseleva

Oxidative polymerization of 3-amino,2'-,(3')-nitrodiphenylazomethine was carried out in various ways. A possible mechanism for the polymerization of 3-amino,2'-,(3')- nitrodiphenylazomethine, where chain growth occurs as type N-C, is shown. It has been found that the yield of the polymer product is affected by the polymerization process and time. The chemical structure of the polymers obtained is established. The study of the thermal properties of polymers showed a low thermal stability and the process of destruction proceeds in two stages.


2007 ◽  
Vol 21 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Cláudio Maniglia-Ferreira ◽  
Eduardo Diogo Gurgel-Filho ◽  
João Batista Araújo Silva Jr ◽  
Regina Célia Monteiro de Paula ◽  
Judith Pessoa Andrade Feitosa ◽  
...  

This study was undertaken to explore the effect of heating on gutta-percha, analyzing the occurrence of endothermic peaks corresponding to the transformation that occurs in the crystalline structure of the polymer during thermal manipulation. This study also seeked to determine the temperature at which these peaks occur, causing a transformation from the beta- to the alpha-form, and from the alpha- to the amorphous phase. Eight nonstandardized gutta-percha points commercially available in Brazil (Konne, Tanari, Endopoint, Odous, Dentsply 0.04, Dentsply 0.06, Dentsply TP, Dentsply FM) and pure gutta-percha (control) were analysed using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The transition temperatures were determined and analysed. With the exception of Dentsply 0.04 and Dentsply 0.06, the majority of the products showed thermal behaviour typical of beta-gutta-percha, with two endothermic peaks, exhibiting two crystalline transformations upon heating from ambient temperature to 130°. Upon cooling and reheating, few samples presented two endothermic peaks. It was concluded that heating dental gutta-percha to 130°C causes changes to its chemical structure which permanently alter its physical properties.


2018 ◽  
Author(s):  
Shruti Sharma ◽  
Viet Hung Pham ◽  
Jorge A. Boscoboinik ◽  
Fernando Camino ◽  
James H. Dickerson ◽  
...  

<p>Mesoscale crumpled graphene oxide roses (GO roses) were synthesized by using colloidal graphene oxide (GO) variants as precursors for a hybrid emulsification/rapid evaporation approach. This process produced rose-like, spherical, reduced mesostructures of colloidal graphene oxide, with corrugated surfaces and particle sizes ranging from ~800 nm to 15 μm. The morphology and chemical structure of these produced GO roses was investigated using electron microscopy and spectroscopy techniques. The proposed synthesis route provides control over particle size, morphology and chemical properties of the synthesized GO roses.</p>


Sign in / Sign up

Export Citation Format

Share Document