Abrasive wear behaviour of TiC-strengthened eutectic high chromium cast iron composites

2021 ◽  
pp. 102906
Author(s):  
R.N. Jia ◽  
T.Q. Tu ◽  
K.H. Zheng ◽  
Z.B. Jiao ◽  
Z.C. Luo
Wear ◽  
1990 ◽  
Vol 135 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Tong Jian-Min ◽  
Zhou Yi-Zhong ◽  
Shen Tian-Yi ◽  
Deng Hai-Jin

2021 ◽  
Vol 406 ◽  
pp. 334-347
Author(s):  
Khedidja Bouhamla ◽  
Amel Gharbi ◽  
Oualid Ghelloudj ◽  
Ali Hadji ◽  
Maouche Hichem ◽  
...  

Various facilities are used in mineral processing to prepare raw material. Practically, two types of balls are used, cast balls and forged balls. They are respectively made from high chromium cast iron and forged steel and are supplied in different sizes and chemical compositions. The cast and forged balls have different microstructures and consequently display dissimilar wear behavior. The target aimed in this work is to achieve a comparative study taking into account the type of microstructure, mechanical properties, and wear behavior of these two kinds of materials. Specimens have undergone chemical, metallographic and XRD characterizations. Subsequently, these samples were subjected to hardness measurements, abrasion and friction tests in order to evaluate their wear behaviour. Tribological tests, under unlubricated environment, are carried out on both types of grinding balls in order to study the wear system. Corrosion tests are also performed on forged steel and high chromium cast iron ball samples. The obtained results reveal a large difference in terms of chemical composition and microstructural components. Chromium cast iron balls are more resistant to friction, whereas forged balls are more resistant to abrasion. Additionally, the corrosion tests reveal a narrow discrepancy in corrosion behaviour between the studied materials.


2015 ◽  
Vol 22 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Ting Sun ◽  
Ren-bo Song ◽  
Xu Wang ◽  
Peng Deng ◽  
Chun-jing Wu

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 588 ◽  
Author(s):  
Mojin Zhou ◽  
Yudong Sui ◽  
Xiaoyu Chong ◽  
YeHua Jiang

The abrasive wear resistance of zirconia toughened alumina (ZTA) ceramic particle reinforced high chromium cast iron (HCCI) composites has been systematically investigated using a moving wedge type of apparatus. The results of three-body abrasive wear show that the wear resistance of the composites with honeycomb is three times higher than that of the high chromium cast iron. The wear resistance of the composites with a honeycomb structure is close to that of the layer structure and is higher than that of the HCCI because the honeycomb wall in the cell honeycomb structure is prominent and because the honeycomb core is depressed. The wear mechanisms of the composites are mainly microcutting and fatigue fractures. The honeycomb structure forms a “macrocosmic shadow protection effect” and a “microcosmic shadow protection effect” to protect each composite and to improve the wear resistance of the composites.


2016 ◽  
Vol 1136 ◽  
pp. 567-572
Author(s):  
Zheng Yi Jiang ◽  
Xing Jian Gao ◽  
Dong Bin Wei ◽  
Sheng Li Li ◽  
Hong Mei Zhang ◽  
...  

The effect of carbide orientation on the dry sliding wear behaviour of high chromium cast iron was studied by pin-on-disc type wear tests at room temperature. The carbide anisotropy was achieved by thermomechanical treatments at temperatures of 950 and 1150 °C. By cladding with low carbon steel, the brittle high chromium cast iron was hot compressed severely with crack free. The thermomechanical treatments not only change the carbide orientation, but also increase the volume fraction of carbides. Due to the long axis of carbide rods is parallel to the wear surface, the high chromium cast iron treated at 1150 °C has a superior wear resistance than the as-cast one, in which the long axis of carbides is perpendicular to the wear surface. For the high chromium cast iron treated at 950 °C, high volume fraction of carbide pits accelerates the wear rate significantly even though it has a similar carbide orientation as the sample treated at 1150 °C. The observations on wear tracks reveal that the ferrous matrix can be protected better from abrasion when the high chromium cast iron was treated at 1150 °C.


Author(s):  
Liyang Xiao ◽  
Pingan Xiao ◽  
Liviu Brândușan ◽  
Jinghong Gu ◽  
Zhongtao Li ◽  
...  

15 wt% Cr sintered High Chromium Cast Iron (HCCI) with full density was successfully prepared by Super-solidus Liquid Phase Sintering (SPLS) technique, with water atomized 15 wt% Cr high chromium cast iron powder as initial materials. Its densification behavior and microstructure evolution in SPLS process and mechanical properties were investigated systematically. Additionally, the impact abrasive wear resistance under different impact energies were also analyzed and compared with another sintered HCCI with 20 wt% Cr. The results indicated that sintering temperature has a strong influence on the sintered alloy’s density, hardness, impact toughness and bending strength. The M7C3 type (M is Cr and Fe) carbides were obviously coarsened as temperature increased and their rod-shaped branches were fully developed at the same time, thereby resulting in carbide network formation in the matrix. The reasonable sintering temperature range was 1195–1205 °C, and the optimum mechanical properties had the hardness of 63.9 HRC, bending strength of 2112.65 MPa and impact toughness of 7.92 J/cm2. What is more important impact abrasive wear test results indicated 15 wt% Cr sintered HCCI’s wear resistance could be comparable to 20 wt% Cr sintered HCCI under impact energy 1~3 J/cm2, and it is more cost effective.


Author(s):  
Shizhong Wei ◽  
Jinhua Zhu ◽  
Liujie Xu ◽  
Rui Long

It is studied the carbons abrasive wear property of high vanadium high speed steel compared with that of general high chromium cast iron (Cr20) in this paper. The vanadium content is 10% in the high vanadium high speed steel, and it is a kind of new wear material that has been studied in the past ten years. In the experiment the three materials were used to resist the abrasive wear of Al2O3, the wear test was conducted on a ML-10 abrasive wear-testing machine. The abrasive surfaces, cross-section and sloping -section surfaces were scanned by means of a SEM (JSM-5160LV) device. The typical morphology photos of VC and Cr7C3 were taken in course of abrasive wear, which not only describe the different abrasive wear property of the carbons in the two materials, but also make the cause of the excellent wear property of this HSS clear. The research results have showed that the service lives (V10) are three times longer than that of high chromium cast iron (Cr20). The excellent wear resistance of high vanadium high-speed steel depends on the characters of high hardness, lumpy morphology of VC which are scattered in hard matrix of HSS.


Sign in / Sign up

Export Citation Format

Share Document