Phase-contrast computed tomography: A correlation study between portal pressure and three dimensional microvasculature of ex vivo liver samples from carbon tetrachloride-induced liver fibrosis in rats

2019 ◽  
Vol 125 ◽  
pp. 103884 ◽  
Author(s):  
Ruijiao Xuan ◽  
Xinyan Zhao ◽  
Jianbo Jian ◽  
Doudou Hu ◽  
Lili Qin ◽  
...  
Radiology ◽  
2021 ◽  
pp. 203967
Author(s):  
Wen-Juan Lv ◽  
Xin-Yan Zhao ◽  
Dou-Dou Hu ◽  
Xiao-Hong Xin ◽  
Li-Li Qin ◽  
...  

2016 ◽  
Vol 23 (2) ◽  
pp. 600-605 ◽  
Author(s):  
Jianbo Jian ◽  
Hao Yang ◽  
Xinyan Zhao ◽  
Ruijiao Xuan ◽  
Yujie Zhang ◽  
...  

Visualization of the microvascular network and thrombi in the microvasculature is a key step to evaluating the development of tumor growth and metastasis, and influences treatment selection. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect minute changes of density and reveal soft tissues discrimination at micrometer-scale resolution. In this study, six human resected hepatocellular carcinoma (HCC) tissues were investigated with PCCT. A histological stain was added to estimate the accuracy of PCCT. The results showed that the fine structures of the microvasculature (measuring 30–100 µm) and thrombi in tiny blood vessels were displayed clearly on imaging the HCC tissues by PCCT. Moreover, density distributions of the thrombi were obtained, which could be reliably used to distinguish malignant from benign thrombi in HCC. In conclusion, PCCT can clearly show the three-dimensional subtle structures of HCC that cannot be detected by conventional absorption-based computed tomography and provides a new method for the imageology of HCC.


2018 ◽  
Vol 47 (6) ◽  
pp. 861-871 ◽  
Author(s):  
Jack D. Neville‐Towle ◽  
Christopher J. Tan ◽  
William C. H. Parr ◽  
William R. Walsh ◽  
Kenneth A. Johnson

2017 ◽  
Vol 86 ◽  
pp. 99-104 ◽  
Author(s):  
Vivien Richter ◽  
Marian S. Willner ◽  
John Henningsen ◽  
Lorenz Birnbacher ◽  
Mathias Marschner ◽  
...  

2015 ◽  
Vol 22 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Kenta Takashima ◽  
Masato Hoshino ◽  
Kentaro Uesugi ◽  
Naoto Yagi ◽  
Shojiro Matsuda ◽  
...  

Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.


Sign in / Sign up

Export Citation Format

Share Document