Electrospun polyurethane/poly (ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions

2021 ◽  
Vol 133 ◽  
pp. 104073
Author(s):  
Sonia Fathi Karkan ◽  
Reza Rahbarghazi ◽  
Soodabeh Davaran ◽  
Leila Shafiei Kaleybar ◽  
Ali Baradar Khoshfetrat ◽  
...  
1987 ◽  
Author(s):  
A M DOSNE ◽  
F DUBOR ◽  
L CHEDID

It has been shown that, under culture conditions, human endothelial cells synthetize plasminogen activator inhibitor (PAI) which neutralize urokinase and tissue plasminogen activator.Treatment of human endothelial cells with LPS (50 ngto 10 μg/ml) from S. enteritidis resulted in a dose-dependent increase in PAI production.Fibrinoenzymographic analysis showed that incubation of supernatantfrom LPS-treated cells with urokinase of low and high mol. w. (33.000 and 55.000) led to disappearance of the two urokinase lytic bands and formation of high mol. w. complexes (Mr 93.000 and 107.000). The mol. w. of the urokinase binding factor was calculated to be near 50.000. Polymyxin B and colimycin could suppress this effect of LPS. Injection of LPS (30 ng-30 yg/kg in the rat led to a considerable decrease in the fibrinolytic activity of plasma euglobulins which clot lysis time was prolonged from 55 up to morethan 240 min. This hypofibrinolytic state was associated with PAI detected in euglobulins and in plasma.Large complexes (Mr 80.000-105.000) were formed between exogenous urokinase of low and high mol. w. mixed with post LPS plasma or euglobulins. Polymyxin B and Colimycin could prevent the hypofibrinolytic response to low doses of LPS. These results suggest thatPAI generation in endotoxemia could be due in part to the direct effect of LPS on endothelium.


1987 ◽  
Author(s):  
M P Wautier ◽  
J L Wautier

The culture of human endothelial cells is largely used for vascular research. The possibility of developping long term culture of human endothelial cells (EC) raised the question regarding the identity after several passages. To further investigate this aspect we have cultured human umbilical vein EC until the 12th passage on fibronectin coated dishes supplemented with ECGF. We have studied the EC morphology by light and electron microscopy, the reactivity with 51Cr labelled platelets, and prostacyclin synthesis. Until the 6th passage no major change could be noted, except the occurence of rare large EC and a reduction in the doubling time between 2nd and 5th passage. After the 7th passage up to the 10th EC became more elongated and did not grow in strict monolayer. The number of vacuoles and mitochondria increased as well as the doubling time. After the 12th passage the EC were still viable but proliferated very slowly. The adhesion of radiolabelled platelets dramatically increased (150%) and PGI2 production significantly decreased (6 Keto PGF1α : 1st passage 13±2.5 ng; 6th passage 0.33±0.27 ng/106 EC). In our culture conditions EC kept most of their original characteristics up to the 6th passage but then lost some of them. At any passage EC contained Weibel Palade bodies and von Willebrand factor. We can conclude that after the 7th passage EC in culture are different from the original cells and could possibly represent an in vitro model of EC ageing.


1986 ◽  
Vol 82 (1) ◽  
pp. 263-280
Author(s):  
R.A. Clark ◽  
J.M. Folkvord ◽  
L.D. Nielsen

Recently, we have presented evidence that proliferating blood vessels produce and deposit fibronectin in situ during the angiogenesis of wound repair. This report extends these observations by demonstrating that human endothelial cells from both large and small vessels depend on fibronectin for their adherence in vitro. Endothelial cells were grown from human umbilical veins (HUVEC) by the method of Gimbrone and from the microvasculature of human omentum by the method of Kern, Knedler and Eckel. Second-passage cells were plated into microtitre wells that had been coated with 100 micrograms ml-1 of fibronectin, types I and III collagen, type IV collagen or laminin. After a 3-h incubation, adherent cells were solubilized with Zap-Isoton and quantified on a Coulter Counter. Under normal culture conditions HUVEC showed no preference for fibronectin substrates while microvascular cells always demonstrated a striking preference for fibronectin substrates. However, when HUVEC were exposed to 2.5 or 25 micrograms ml-1 of cycloheximide for 4 h before and during the adherence assays, the adherence to fibronectin was 50–200% greater than to types I and III collagen. Immunofluorescence studies showed that while HUVEC expressed a large quantity of surface fibronectin, microvascular cells expressed very little. Metabolic labelling studies confirmed that HUVEC cultures had substantial quantities of fibronectin in their cell layer while microvascular cells did not. In antibody blocking experiments, preincubation of fibronectin-coated surfaces with anti-fibronectin antibodies totally blocked microvascular cell adhesion but only abrogated HUVEC adherence by 50%, presumably since these latter cells were able to deposit additional fibronectin onto the surface during the 3 h assay period. In the presence of cycloheximide anti-fibronectin antibodies totally blocked HUVEC adherence. These results demonstrate that both endothelial cell types rely, at least in part, on fibronectin for adherence in vitro. HUVEC can synthesize, secrete and deposit enough fibronectin for their adherence in vitro, while microvascular cells rely on an exogenous source of fibronectin under these culture conditions. Thus, the increased blood vessel fibronectin observed during angiogenesis in vivo may mediate adherence of the proliferating and migrating endothelial cells.


1990 ◽  
Vol 186 (2) ◽  
pp. 381-384 ◽  
Author(s):  
M.G. Lampugnani ◽  
N. Polentarutti ◽  
M. Pedenovi ◽  
A. Mantovani ◽  
E. Dejana ◽  
...  

2021 ◽  
pp. 104174
Author(s):  
Akram Salami Ghaleh ◽  
Sepideh Saghati ◽  
Reza Rahbarghazi ◽  
Ayla Hassani ◽  
Leila Shafiei Kaleybar ◽  
...  

1990 ◽  
Vol 63 (02) ◽  
pp. 303-311
Author(s):  
Tone Børsum

SummaryHuman endothelial cells isolated from umbilical cordswere solubilized in Triton X-100 and examined by crossedimmunoelec-trophoresis using rabbit antiserum against endothelial cells. Endogenous labelling of the endothelialcell proteins with 14Cmannose followed by crossed immunoelectrophoresis and autoradiography revealed about 10 immunoprecipitates. Four of these endothelial cell glycoproteins were labelled by lactoperoxidase catalyzed iodination and thus were surface located. Three of the surface located glycoproteins showed reduced electrophoretic mobility after incubation of the endothelial cells with neuraminidase and were therefore sialoglycoproteins. Amphiphilicity of endothelial cell glycoproteins was studied by crossed hydrophobic interaction immunoelectrophoresis with phenyl-Sepharose in the intermediate gel. Amphiphilic proteins also show increasing electrophoretic migration velocity with decreasing concentration of Triton X-100 in the first dimension gels. Five of the endothelial cell glycoproteins were shown to be amphiphilic using these two techniques.Two monoclonal antibodies against the platelet glycoprotein complex Ilb-IIIa and glycoprotein IlIa, respectively, reacted with the same precipitate of endothelial cells. When a polyclonal antibody against the platelet glycoprotein complex Ilb-IIIa was incorporated into the intermediate gel the position of two endothelial cell precipitates were lowered. One of these was a sialoglycoprotein.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1996 ◽  
Vol 76 (02) ◽  
pp. 258-262 ◽  
Author(s):  
Robert I Roth

SummaryHuman endothelial cells, when incubated with bacterial endotoxin (lipopolysaccharide, LPS), modify their surface in association with prominent production of procoagulant tissue factor (TF) activity. This deleterious biological effect of LPS has been shown previously to be enhanced approximately 10-fold by the presence of hemoglobin (Hb), a recently recognized LPS binding protein that causes disaggregation of LPS and increases the biological activity of LPS in a number of in vitro assays. The present study was performed to test the hypothesis that Hb enhances the LPS-induced procoagulant activity of human umbilical vein endothelial cells (HUVEC) by increasing LPS binding to the cells. The binding of 3H-LPS to HUVEC was determined in the absence or presence of Hb or two other known LPS-binding proteins, human serum albumin (HSA) and IgG. LPS binding was substantially increased in the presence of Hb, in a Hb concentration-dependent manner, but was not increased by HSA or IgG. Hb enhancement of LPS binding was observed in serum-free medium, indicating that there was no additional requirement for any of the serum factors known to participate in the interaction of LPS with cells (e.g., lipopolysaccharide (LPS)-binding protein (LBP) and soluble CD14 (sCD14)). Hb enhancement of LPS binding also was observed in the more physiologic condition of 100% plasma. LPS-induced TF activity was stimulated by Hb, but not by HSA or IgG. In serum-free medium, TF activity was not stimulated under any of the conditions tested. Ultrafiltration of LPS was dramatically increased after incubation with Hb but not with HSA or IgG, suggesting that LPS disaggregation by Hb was responsible for the enhanced binding of LPS to HUVEC and the subsequent stimulation of TF activity.


Sign in / Sign up

Export Citation Format

Share Document