Recent progress on black phosphorus quantum dots for full-spectrum solar-to-chemical energy conversion

Nano Today ◽  
2021 ◽  
Vol 39 ◽  
pp. 101183
Author(s):  
Wanying Lei ◽  
Xin Pang ◽  
Guanglu Ge ◽  
Gang Liu
ACS Nano ◽  
2018 ◽  
Vol 12 (12) ◽  
pp. 12401-12415 ◽  
Author(s):  
Leung Chan ◽  
Pan Gao ◽  
Wenhua Zhou ◽  
Chaoming Mei ◽  
Yanyu Huang ◽  
...  

Author(s):  
Xiangjing Ying ◽  
Yuxin Liu ◽  
Zheng Liu ◽  
Menglong Zhang ◽  
Chuanglei Wang ◽  
...  

Gradient alloyed quantum dots (QDs) are newly interesting photocatalysts for efficient solar-to-chemical energy conversion to solve increasing energy and environmental problems. Nevertheless, few studies have been devoted to exploring structure-property...


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shibo Xu ◽  
Linna Chang ◽  
Yanan Hu ◽  
Xingjun Zhao ◽  
Shuocheng Huang ◽  
...  

Abstract Background Healing of MRSA (methicillin-resistant Staphylococcus aureus) infected deep burn wounds (MIDBW) in diabetic patients remains an obstacle but is a cutting-edge research problem in clinical science. Surgical debridement and continuous antibiotic use remain the primary clinical treatment for MIDBW. However, suboptimal pharmacokinetics and high doses of antibiotics often cause serious side effects such as fatal complications of drug-resistant bacterial infections. MRSA, which causes wound infection, is currently a bacterium of concern in diabetic wound healing. In more severe cases, it can even lead to amputation of the patient's limb. The development of bioactive nanomaterials that can promote infected wound healing is significant. Results The present work proposed a strategy of using EGCG (Epigallocatechin gallate) modified black phosphorus quantum dots (BPQDs) as therapeutic nanoplatforms for MIDBW to achieve the synergistic functions of NIR (near-infrared)-response, ROS-generation, sterilization, and promoting wound healing. The electron spin resonance results revealed that EGCG-BPQDs@H had a more vital photocatalytic ability to produce singlet oxygen than BPQDs@H. The inhibition results indicated an effective bactericidal rate of 88.6% against MRSA. Molecular biology analysis demonstrated that EGCG-BPQDs significantly upregulated CD31 nearly fourfold and basic fibroblast growth factor (bFGF) nearly twofold, which were beneficial for promoting the proliferation of vascular endothelial cells and skin epidermal cells. Under NIR irradiation, EGCG-BPQDs hydrogel (EGCG-BPQDs@H) treated MIDBW area could rapidly raise temperature up to 55 °C for sterilization. The MIBDW closure rate of rats after 21 days of treatment was 92.4%, much better than that of 61.1% of the control group. The engineered EGCG-BPQDs@H were found to promote MIDBW healing by triggering the PI3K/AKT and ERK1/2 signaling pathways, which could enhance cell proliferation and differentiation. In addition, intravenous circulation experiment showed good biocompatibility of EGCG-BPQDs@H. No significant damage to major organs was observed in rats. Conclusions The obtained results demonstrated that EGCG-BPQDs@H achieved the synergistic functions of photocatalytic property, photothermal effects and promoted wound healing, and are promising multifunctional nanoplatforms for MIDBW healing in diabetics. Graphical Abstract


2016 ◽  
Vol 27 (50) ◽  
pp. 505204 ◽  
Author(s):  
Wei Wang ◽  
Xinyue Niu ◽  
Haolei Qian ◽  
Liao Guan ◽  
Ming Zhao ◽  
...  

2018 ◽  
Vol 6 (19) ◽  
pp. 8886-8894 ◽  
Author(s):  
Nianqing Fu ◽  
Chun Huang ◽  
Peng Lin ◽  
Mingshan Zhu ◽  
Tao Li ◽  
...  

Dual-functional black phosphorus quantum dot electron selective layer was designed for plastic perovskite solar cells. The efficient electron extraction and improved perovskite film quality contributed to the reasonably high efficiency.


2018 ◽  
Vol 217 ◽  
pp. 92-95 ◽  
Author(s):  
Qingduan Li ◽  
Jianwei Yang ◽  
Chun Huang ◽  
Shaozhong Zeng ◽  
Jizhao Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document