Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells

Nano Today ◽  
2022 ◽  
Vol 43 ◽  
pp. 101394
Author(s):  
Qingli Cao ◽  
Pengwei Li ◽  
Wei Chen ◽  
Shuangquan Zang ◽  
Liyuan Han ◽  
...  
Keyword(s):  
2021 ◽  
pp. 1521-1532
Author(s):  
Qiang Fu ◽  
Zhiyuan Xu ◽  
Xingchen Tang ◽  
Tingting Liu ◽  
Xiyue Dong ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2460
Author(s):  
Jian Zou ◽  
Mengnan Liu ◽  
Shuyu Tan ◽  
Zhijie Bi ◽  
Yong Wan ◽  
...  

A two-dimensional perovskite photonic crystal structure of Methylamine lead iodide (CH3NH3PbI3, MAPbI3) is rationally designed as the absorption layer for solar cells. The photonic crystal (PC) structure possesses the distinct “slow light” and band gap effect, leading to the increased absorption efficiency of the absorption layer, and thus the increased photoelectric conversion efficiency of the battery. Simulation results indicate that the best absorption efficiency can be achieved when the scattering element of indium arsenide (InAs) cylinder is arranged in the absorption layer in the form of tetragonal lattice with the height of 0.6 μm, the diameter of 0.24 μm, and the lattice constant of 0.4 μm. In the wide wavelength range of 400–1200 nm, the absorption efficiency can be reached up to 82.5%, which is 70.1% higher than that of the absorption layer without the photonic crystal structure. In addition, the absorption layer with photonic crystal structure has good adaptability to the incident light angle, presenting the stable absorption efficiency of 80% in the wide incident range of 0–80°. The results demonstrate that the absorption layer with photonic crystal structure can realize the wide spectrum, wide angle, and high absorption of incident light, resulting in the increased utilization efficiency of solar energy.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


2021 ◽  
Author(s):  
Stav Rahmany ◽  
Lioz Etgar

Much effort has been made to push the power conversion efficiency of perovskite solar cells (PSCs) towards the theoretical limit. Recent studies have shown that post deposition treatment of barrier...


APL Materials ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 020906
Author(s):  
Tao Zhang ◽  
Qiang Sun ◽  
Xiaoli Zhang ◽  
Yan Shen ◽  
Mingkui Wang

Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


Sign in / Sign up

Export Citation Format

Share Document