scholarly journals Determination of chromosomes controlling physiological traits associated to salt tolerance in barley in seedling stage

2009 ◽  
Vol 25 ◽  
pp. S304 ◽  
Author(s):  
Z. Aminfar ◽  
B. Siahsar ◽  
M. Heidary
2011 ◽  
Vol 10 (44) ◽  
pp. 8794-8799 ◽  
Author(s):  
Aminfar Zahra ◽  
Dadmehr Mehdi ◽  
Korouzhdehi Behnaz ◽  
Siasar Baratali ◽  
Heidari Mohamad

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Rajni Devi ◽  
Sewa Ram ◽  
Ajay Verma ◽  
Veena Pande ◽  
Gyanendra Pratap Singh

2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2013 ◽  
Vol 132 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Y. Xu ◽  
S. Li ◽  
L. Li ◽  
X. Zhang ◽  
H. Xu ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Md. Islam ◽  
John Ontoy ◽  
Prasanta Subudhi

Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.


Sign in / Sign up

Export Citation Format

Share Document