Scale up of industrial enzyme production

2012 ◽  
Vol 29 ◽  
pp. S75
Author(s):  
Rogier Meulenberg
2003 ◽  
Vol 46 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Georgina L. Michelena ◽  
Aidín Martínez ◽  
Antonio Bell ◽  
Emilia Carrera ◽  
Roxana Valencia

Fed batch fermentation was carried out for the dextransucrase enzyme production from Leuconostoc mesenteroides and the production was scale-up using oxygen transfer criteriuom. It was found that in 5 L vessel fermentation capacity, the best agitation speed was 225 min-1 and aeration rate was 0.15 vvm, obtaining dextransucrase activity of 127 DSU/mL.. The maximum enzyme production velocity coincide with the maximum growth velocity between 6 and 7 h of fermentation, which confirmed that dextransucrase production was associated with microbial growth. High enzyme yields were achieved during scale up based on oxygen transfer rate.


2001 ◽  
Vol 47 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Yuxin Wang ◽  
Rafael Vazquez-Duhalt ◽  
Michael A Pickard

We were looking for a strain of Bjerkandera adusta that produces high titres of manganese peroxidase under optimal conditions for large-scale enzyme purification. We have chosen two strains from the University of Alberta Microfungus Collection and Herbarium, UAMH 7308 and 8258, and compared the effects of growth conditions and medium composition on enzyme production with the well-characterized strain BOS55 (ATCC 90940). Of four types of cereal bran examined, rice bran at 3% (w/v) in 60 mM phosphate buffer pH 6 supported the highest levels of enzyme production. Using 100 mL medium in 500-mL Erlenmeyer flasks, maximum enzyme levels in the culture supernatant occurred after about 10 days of growth; 5.5 U·mL–1 for UAMH 7308, 4.4 U·mL–1 for UAMH 8258, and 1.7 U·mL–1 for BOS55, where units are expressed as micromoles of Mn-malonate formed per minute. Growth as submerged cultures in 10-L stirred tank reactors produced 3.5 U·mL–1 of manganese peroxidase (MnP) by UAMH 8258 and 2.5 U·mL–1 of MnP by 7308, while enzyme production by BOS55 was not successful in stirred tank reactors but could be scaled up in 2-L shake flasks containing 400 mL rice bran or glucose – malt – yeast extract (GMY) – Mn-glycolate medium to produce MnP levels of 1.7 U·mL–1. These results show that the two strains of B. adusta, UAMH 7308 and 8258, can produce between two and three times the manganese peroxidase level of B. adusta BOS55, that they are good candidates for scale up of enzyme production, and that the rice bran medium supports higher levels of enzyme production than most previously described media.Key words: growth conditions, cereal bran, manganese peroxidase, Bjerkandera adusta, white rot fungi.


2010 ◽  
Vol 38 (2) ◽  
pp. 1367-1374 ◽  
Author(s):  
M. Siddique Awan ◽  
Nabila Tabbasam ◽  
N. Ayub ◽  
M. E. Babar ◽  
Mehboob-ur-Rahman ◽  
...  

1985 ◽  
Vol 31 (7) ◽  
pp. 185-188
Author(s):  
J. KUČERA

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Hariadi Nawawi ◽  
Rosfarizan Mohamad ◽  
Paridah Md. Tahir ◽  
Wan Zuhainis Saad

Microbial xylanase and pectinase are two extremely valuable enzymes, which have captivated much attention. This can be seen from the increased demand for these enzymes by many industrial sectors. This study investigates the isolation and screening of extracellular xylanopectinolytic enzymes-producing bacteria in a submerged fermentation (SmF). Samples are collected from the compost of empty fruit bunch (EFB) at Biocompost Pilot Plant, located at Biorefinery Plant, Universiti Putra Malaysia. From the experiment, out of 20 isolates, 11 isolates show xylanase or/and pectinase activity, and only one isolate (EFB-11) shows the concurrent activities of xylanase and pectinase. These activities are selected for enzyme production under submerged fermentation (quantitative screening). At the 72nd hour of incubation, xylanase and pectinase show the highest production, which ranges about 42.33 U/mL and 62.17 U/mL (with low amount of cellulase present), supplemented with 2% (w/v) of rice bran as carbon source at incubation temperature level, which is 30°C. Meanwhile, the pH of media is shifted to 8.42, which indicates that EFB-11 isolate is alkalotolerant bacteria and identified as Bacillus subtilis ADI1. This strain proves to have potential in agroindustrial bioconversion and has a promising ability to scale up to an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document