Antibacterial activity of zinc oxide and copper oxide nanoparticles against Gram-positive and Gram-negative bacterial strains ss

2018 ◽  
Vol 44 ◽  
pp. S2
Author(s):  
R. Dadi ◽  
R. Azouani ◽  
M. Traoré ◽  
C. Mielcarek ◽  
A. Kanaev
2019 ◽  
Vol 6 (1) ◽  
pp. 63-72
Author(s):  
Abdelali Merah ◽  
Abdenabi Abidi ◽  
Hana Merad ◽  
Noureddine Gherraf ◽  
Mostepha Iezid ◽  
...  

Abstract Interest in nanomaterials, especially metal oxides, in the fight against resistant and constantly changing bacterial strains, is more and more expressed. Their very high reactivity, resulting from their large surface area, promoted them to the rank of potential successors of antibiotics. Our work consisted of the synthesis of zinc oxide (ZnO) and copper oxide (CuO) in the nanoparticle state and the study of their bactericidal effect on various Gram-negative and Gram-positive bacterial strains. The nanoparticles of metal oxides have been synthesized by sol-gel method. Qualitative analysis and characterization by UV / Visible and infrared spectrophotometry and X-ray diffraction confirmed that the synthetic products are crystalline. The application of the Scherrer equation allows to determine the size of the two metal oxides, namely: 76.94 nm for ZnO and 24.86 nm for CuO. The bactericidal effect of ZnO and CuO nanoparticles was tested on Gram-positive bacteria (Staphylococcus aureus, Staphylococcus hominis, Staphylococcus haemolyticus, Enterococcus facials) and Gram-negative bacteria (Escherichia coli, Schigella, Klepsiella pneumoniae and Pseudomonas aeruginosa). The results indicate that the tested metal oxides nanoparticles have an effect that varies depending on bacterial species. Indeed, Gram-positive bacteria show greater sensitivity to ZnO nanoparticles whereas Gram-negative bacteria are more sensitive to CuO nanoparticles.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


Author(s):  
Shivani Kushwaha

Abstract: Nanotechnology is a rising field of science and technology that deals with the particles having size in the range of 1 to 100 nm. Copper oxide nanoparticles has many properties like antifungal activity, antibacterial activity, optical properties, conductive properties, etc. Due to its demand of diversified use, copper oxide nanoparticles were fabricated using ecofriendly and non-toxic Annona muricata stem extract. The extract with copper sulphate pentahydrate showed gradual change in the colour of the extract from brown to green which indicates the CuO nanoparticles synthesis. The fabrication is followed by characterization of CuO nanoparticles using UV-vis spectroscope, FTIR, XRD and SEM. The characterization showed roughly spherical shaped nanoparticles in the range of 100nm with high crystalline monoclinic phase. FTIR absorption spectra conclude that the compounds attached with copper oxide nanoparticles could be polyphenols with aromatic ring. The CuO nanoparticles exhibited antibacterial activity; it showed the maximum activity against E.coli (18 mm). Keywords: Annona muricata, copper sulphate pentahydrate, FTIR, nanomaterials, SEM, XRD.


Sign in / Sign up

Export Citation Format

Share Document