Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria

Author(s):  
Selvam Sathiyavimal ◽  
Seerangaraj Vasantharaj ◽  
Devaraj Bharathi ◽  
Mythili Saravanan ◽  
Elayaperumal Manikandan ◽  
...  
Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2017 ◽  
Vol 14 (4) ◽  
pp. 801-807
Author(s):  
Baghdad Science Journal

In this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was inversely proportional to the size of the nanoparticles in both Gram-negative and Gram-positive, and also it has been found that Gram-positive bacteria possess have greater sensitivity and less resistance to the lead oxide nanoparticles compared with Gram-negative bacteria.


2008 ◽  
Vol 8 (6) ◽  
pp. 3191-3196 ◽  
Author(s):  
Syed Saif Hasan ◽  
Sanjay Singh ◽  
Rasesh Y. Parikh ◽  
Mahesh S. Dharne ◽  
Milind S. Patole ◽  
...  

A bacterial mediated synthesis of copper/copper oxide nanoparticle composite is reported. A Gram-negative bacterium belonging to the genus Serratia was isolated from the midgut of Stibara sp., an insect of the Cerambycidae family of beetles found in the Northwestern Ghats of India. This is a unique bacterium that is quite specific for the synthesis of copper oxide nanoparticles as several other strains isolated from the same insect and common Indian mosquitoes did not result in nanoparticle formation. By following the reaction systematically, we could delineate that the nanoparticle formation occurs intracellularly. However, the process results in the killing of bacterial cells. Subsequently the nanoparticles leak out as the cell wall disintegrates. The nanoparticles formed are thoroughly characterized by UV-Vis, TEM, XRD, XPS and FTIR studies.


2019 ◽  
Vol 6 (1) ◽  
pp. 63-72
Author(s):  
Abdelali Merah ◽  
Abdenabi Abidi ◽  
Hana Merad ◽  
Noureddine Gherraf ◽  
Mostepha Iezid ◽  
...  

Abstract Interest in nanomaterials, especially metal oxides, in the fight against resistant and constantly changing bacterial strains, is more and more expressed. Their very high reactivity, resulting from their large surface area, promoted them to the rank of potential successors of antibiotics. Our work consisted of the synthesis of zinc oxide (ZnO) and copper oxide (CuO) in the nanoparticle state and the study of their bactericidal effect on various Gram-negative and Gram-positive bacterial strains. The nanoparticles of metal oxides have been synthesized by sol-gel method. Qualitative analysis and characterization by UV / Visible and infrared spectrophotometry and X-ray diffraction confirmed that the synthetic products are crystalline. The application of the Scherrer equation allows to determine the size of the two metal oxides, namely: 76.94 nm for ZnO and 24.86 nm for CuO. The bactericidal effect of ZnO and CuO nanoparticles was tested on Gram-positive bacteria (Staphylococcus aureus, Staphylococcus hominis, Staphylococcus haemolyticus, Enterococcus facials) and Gram-negative bacteria (Escherichia coli, Schigella, Klepsiella pneumoniae and Pseudomonas aeruginosa). The results indicate that the tested metal oxides nanoparticles have an effect that varies depending on bacterial species. Indeed, Gram-positive bacteria show greater sensitivity to ZnO nanoparticles whereas Gram-negative bacteria are more sensitive to CuO nanoparticles.


2020 ◽  
Vol 16 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Mehri Kouhkan ◽  
Parinaz Ahangar ◽  
Leila Ashrafi Babaganjeh ◽  
Maryam Allahyari-Devin

Background:The present study reveals the synthesis of copper oxide nanoparticles (CuO NPs) by probiotic bacteria (Lactobacillus casei subsp. casei) and demonstrates the cytotoxic effects of these nanoparticles against gram negative and positive bacteria and cancer cell lines.Methods:The CuO NPs are biosynthesized from Lactobacillus casei subsp. casei (L. casei) in an eco-friendly and cost-effective process. These nanoparticles are characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and transmittance electron microscope (TEM) analysis. The antibacterial activity is examined by Well-diffusion, minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) assays using Broth microdilution. Anticancer effects of these nanoparticles are evaluated by methyl thiazolyl diphenyl-tetrazolium bromide (MTT) assay and Griess test.Results:Our results confirm the biosynthesis of CuO NPs from L. casei. Antibacterial assays demonstrate that treatment of gram-negative and gram-positive bacteria with CuO NPs inhibits the growth of these bacteria. Furthermore, the cell viability of human cancer cells decreases while treated by nanoparticles. These nanoparticles increase nitric oxide (NO) secretion determined by NO production measurement.Conclusion:These results suggest that CuO NPs may exert antibacterial effects as well as cytotoxic effects on cancer cells by suppressing their growth, increasing the oxidative stress and inducing apoptosis.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4747
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Roxana-Doina Trușcă ◽  
Ovidiu-Cristian Oprea ◽  
Vasile-Adrian Surdu ◽  
...  

In this study, zinc oxide nanoparticles were synthesized through a simple co-precipitation method starting from zinc acetate dihydrate and sodium hydroxide as reactants. The as-obtained ZnO nanoparticles were morphologically and structurally characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photocatalytic activity, and by determining the antimicrobial activity against Gram-negative and Gram-positive bacteria. The XRD pattern of the zinc oxide nanoparticles showed the wurtzite hexagonal structure, and its purity highlighted that the crystallinity correlated with the presence of a single product, zinc oxide. The ZnO nanoparticles have an average crystallite size of 19 ± 11 nm, which is in accordance with the microscopic data. ZnO nanoparticles were tested against methyl orange, used as a model pollutant, and it was found that they exhibit strong photocatalytic activity against this dye. The antibacterial activity of ZnO nanoparticles was tested against Gram-negative and Gram-positive strains (Escherichia coli, Staphylococcus aureus, and Candida albicans). The strongest activity was found against Gram-positive bacteria (S. aureus).


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Sign in / Sign up

Export Citation Format

Share Document