In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE

2018 ◽  
Vol 93 ◽  
pp. 117-130 ◽  
Author(s):  
Venkata Karthik Nadimpalli ◽  
Li Yang ◽  
Peter B. Nagy
Author(s):  
Caleb P. Massey ◽  
Nitish Bibhanshu ◽  
Maxim N. Gussev ◽  
Cody J. Havrilak ◽  
Andrew T. Nelson

AbstractThe microstructural evolution, deformation modes, and fracture mechanisms of zirconium plate produced using ultrasonic additive manufacturing (UAM) are presented. In addition to conventional tensile testing techniques, digital image correlation captured highly variable strain accumulation in specimens loaded perpendicular or parallel to the build height (Z). When tested in parallel to Z, delamination at prior foil/foil interfaces creates strain localization noticeable in strain rate maps, whereas specimens loaded perpendicular to Z illustrate conventional strain hardening until necking accelerates delamination. Although bond strengths are statistically and spatially variable, in situ electron backscattering diffraction tests illustrate the ability for grains near interfaces to accommodate strain with twinning and slip modes consistent with conventionally produced zirconium alloys. Finally, mixtures of ductile and delamination-induced fracture highlight the interface-driven failure modes of UAM zirconium plate in the as-built condition. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2021 ◽  
Vol 64 ◽  
pp. 972-981
Author(s):  
Daniel Kaczmarek ◽  
Daniel Walczyk ◽  
James Garofalo ◽  
Margaret Sobkowicz-Kline

2020 ◽  
Vol 25 (8) ◽  
pp. 679-689
Author(s):  
J. Raplee ◽  
J. Gockel ◽  
F. List ◽  
K. Carver ◽  
S. Foster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document