Evaluation of metallic bonded plates with nonlinear ultrasound and comparison with destructive testing

2021 ◽  
pp. 102514
Author(s):  
Paul Zabbal ◽  
Guillemette Ribay ◽  
Julien Jumel
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5368
Author(s):  
Frank Mevissen ◽  
Michele Meo

Nonlinear ultrasound crack detection methods are used as modern, non-destructive testing tools for inspecting early damages in various materials. Nonlinear ultrasonic wave modulation, where typically two or more frequencies are excited, was demonstrated to be a robust method for failure indicators when using measured harmonics and modulated response frequencies. The aim of this study is to address the capability of multi-frequency wave excitation, where more than two excitation frequencies are used, for better damage identification when compared to single and double excitation frequencies without the calculation of dispersion curves. The excitation frequencies were chosen in such a way that harmonic and modulated response frequencies meet at a specific frequency to amplify signal energy. A new concept of nonlinearity parameter grouping with multi-frequency excitation was developed as an early failure parameter. An analytical solution of the one-dimensional wave equation was derived with four fundamental frequencies, and a total of 64 individual and 30 group nonlinearity parameters. Experimental validation of the approach was conducted on metal plates with different types of cracks and on turbine blades where cracks originated under service conditions. The results showed that the use of multi-frequency excitation offers advantages in detecting cracks.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


2005 ◽  
Vol 2 (2) ◽  
pp. 17
Author(s):  
Norhayati Hamzah ◽  
Deepak Kumar Ghodgaonkar ◽  
Kamal Faizin Che Kasim ◽  
Zaiki Awang

Microwave nondestructive testing (MNDT) techniques are applied to evaluate quality of anti-corrosive protective coatings and paints on metal surfaces. A tree-space microwave measurement (FSMM) system is used for MNDT of protective coatings. The FSMM system consists of transmit and receive spot-focusing horn lens antennas, a vector network analyzer, mode transitions and a computer. Diffraction effects at the edges of the sample are minimized by using spot-focusing horn lens antennas. Errors due to multiple reflections between antennas are corrected by using free-space LRL (line, reflect, line) calibration technique. We have measured complex reflection coefficient of polyurethane based paint which is coated on brass plates.


2015 ◽  
Vol 7 (2) ◽  
pp. 1428-1439
Author(s):  
Khurshed Alam ◽  
Md. Sayeedur Rahman ◽  
Md. Mostafizur Rahman ◽  
S. M. Azaharul Islam

A powerful non-destructive testing (NDT) technique is adopted to study the internal defects and elemental distribution/homogeneity and porosity of aerated brick and EPS aggregate poly brick samples. In the present study the internal defects like homogeneity, porosity, elemental distribution, EPS aggregate and aerator distributor in the test samples have been observed by the measurement of gray value/optical density of the neutron radiographic images of these samples. From this measurement it is found that the neutron intensity/optical density variation with the pixel distance of the AOI of the NR images in both expanded polystyrene (EPS) aggregate poly brick and aerated brick samples comply almost same in nature with respect to the whole AOI but individually each AOI shows different nature from one AOI to another and it confirms that the elemental distribution within a AOI is almost homogeneous. Finally it was concluded that homogeneity, elemental distribution in the EPS aggregate poly brick sample is better than that of the aerated brick sample. 


Sign in / Sign up

Export Citation Format

Share Document