Non-destructive lock-in thermography of green powder metallurgy component inhomogeneities: A predictive imaging method for manufactured component flaw prevention

2022 ◽  
pp. 102603
Author(s):  
Keith Sebastian ◽  
Alexander Melnikov ◽  
Koneswaran Sivagurunathan ◽  
Xinxin Guo ◽  
Xianzhi Wang ◽  
...  
Author(s):  
Frank Altmann ◽  
Christian Grosse ◽  
Falk Naumann ◽  
Jens Beyersdorfer ◽  
Tony Veches

Abstract In this paper we will demonstrate new approaches for failure analysis of memory devices with multiple stacked dies and TSV interconnects. Therefore, TSV specific failure modes are studied on daisy chain test samples. Two analysis flows for defect localization implementing Electron Beam Induced Current (EBAC) imaging and Lock-in-Thermography (LIT) as well as adapted Focused Ion Beam (FIB) preparation and defect characterization by electron microscopy will be discussed. The most challenging failure mode is an electrical short at the TSV sidewall isolation with sub-micrometer dimensions. It is shown that the leakage path to a certain TSV within the stack can firstly be located by applying LIT to a metallographic cross section and secondly pinpointing by FIB/SEM cross-sectioning. In order to evaluate the potential of non-destructive determination of the lateral defect position, as well as the defect depth from only one LIT measurement, 2D thermal simulations of TSV stacks with artificial leakages are performed calculating the phase shift values per die level.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
C. Toscano ◽  
C. Meola ◽  
M. C. Iorio ◽  
G. M. Carlomagno

The ever wide use of composite materials in the aeronautical industry has evidenced the need for development of ever more effective nondestructive evaluation methodologies in order to reduce rejected parts and to optimize production costs. Infrared thermography has been recently enclosed amongst the standardized non destructive testing techniques, but its usefulness needs still complete assessment since it can be employed in several different arrangements and for many purposes. In this work, the possibility to detect slag inclusions and porosity is analyzed with both lock-in themography and pulse thermography in the transmission mode. To this end, carbon-fiber-peinforced polymers different specimens are specifically fabricated of several different stacking sequences and with embedded slag inclusions and porosity percentages. As main results, both of the techniques are found definitely able to reveal the presence of the defects above mentioned. Moreover, these techniques could be considered complementary in order to better characterize the nature of the detected defects.


2016 ◽  
Vol 712 ◽  
pp. 303-307 ◽  
Author(s):  
Maxim V. Trigub ◽  
Stanislav N. Torgaev ◽  
Gennadiy S. Evtushenko ◽  
Vitaliy V. Drobchik

The imaging results of different processes blocked from the observation by the intense background light are presented in this paper. Active optical systems based on high-frequency brightness amplifier are used to decrease the negative factor of the glare. The experimental and modeling results on obtaining high pulse repetition frequencies (PRF) (more than 100 kHz) of copper bromide vapor brightness amplifiers operating in a low input energy mode are shown. The use of metal vapor brightness amplifiers for visual non-destructive testing of fast processes obscured by the glare is also discussed. It has been shown that the imaging method proposed in this paper proves to be the most reliable to obtain the information about objects or processes in a real time mode using high PRF CuBr active media.


2020 ◽  
Vol 1007 ◽  
pp. 105-110
Author(s):  
Xin Xin Wang ◽  
Cheng He ◽  
Pu Zhi Zhao ◽  
Yi Zheng ◽  
Shi Hao Jiang ◽  
...  

In this paper, a new ultrasonic phased array full focus imaging method based on oblique incidence is proposed to solve the problem of the non-destructive testing of the internal defects in the GIS (gas insulated switchgear) shell welds. By using wedge coupling, the measured weld is far away from the near-field range of the transducer, and the detection angle range can be increased by changing the propagation direction of the acoustic beam. Based on Snell's law, the propagation characteristics of the ultrasonic wave in the interface are studied. On the basis of the conventional ultrasonic array matrix and the full focus imaging algorithm, by introducing the energy attenuation calibration coefficient of the acoustic wave propagation through the wedge, the correction amplitude of the specific focus point p(x, z) is obtained, The non-destructive testing of weld defects of GIS shell in the spot is carried out, and the test results show that the qualitative and quantitative detection of the weld defects can be well realized by using this method.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1185
Author(s):  
Davide Palumbo

Many structural components made of composite materials need an accurate thickness control during fabrication and/or maintenance. In this regard, various non-destructive techniques can be used for the online measuring of thickness of large components such as wings and fuselage in the aerospace industry. In this work, the capabilities of lock-in thermography technique in thickness measurement of glass fiber reinforced plastic material were investigated and a correct procedure has been proposed to ensure the best measurement accuracy. An analytical approach and several tests were carried out on a sample specimen with the aim to study the main test parameters. Finally, the limits of technique have been discussed.


2007 ◽  
Vol 367-370 ◽  
pp. 1492-1496 ◽  
Author(s):  
F. Escourbiac ◽  
S. Constans ◽  
X. Courtois ◽  
A. Durocher

2015 ◽  
Vol 1122 ◽  
pp. 173-176
Author(s):  
Zdeněk Peřina ◽  
Radek Fabian ◽  
Marie Wolfová ◽  
Pavel Valíček ◽  
Vladan Panovec

Nowadays there are many diagnostic methods for the detection of different defects in building structures. Destructive methods, which do not enable purposeful redevelopment action or a potential cause prediction of the defect without damage to the structure, are mostly used. Lock-in thermography is based on the modulation of the controlled heat flow, which impact on the diagnosed object. Heat (usually sinusoidal) wave penetrates inside the element and in the place of environmental change, ie. anomalies / deviations in the structure of the material of the tested object are reflected back to the surface. The paper focuses on the possibility of using lock-in thermography in the detection of various defects in building structures.


Sign in / Sign up

Export Citation Format

Share Document