Neighborhood geometry based feature matching for geostationary satellite remote sensing image

2017 ◽  
Vol 236 ◽  
pp. 65-72 ◽  
Author(s):  
Dan Zeng ◽  
Ting Zhang ◽  
Rui Fang ◽  
Wei Shen ◽  
Qi Tian
Author(s):  
Y. Xu ◽  
X. Hu ◽  
Y. Wei ◽  
Y. Yang ◽  
D. Wang

<p><strong>Abstract.</strong> The demand for timely information about earth’s surface such as land cover and land use (LC/LU), is consistently increasing. Machine learning method shows its advantage on collecting such information from remotely sensed images while requiring sufficient training sample. For satellite remote sensing image, however, sample datasets covering large scope are still limited. Most existing sample datasets for satellite remote sensing image built based on a few frames of image located on a local area. For large scope (national level) view, choosing a sufficient unbiased sampling method is crucial for constructing balanced training sample dataset. Dependable spatial sample locations considering spatial heterogeneity of land cover are needed for choosing sample images. This paper introduces an ongoing work on establishing a national scope sample dataset for high spatial-resolution satellite remote sensing image processing. Sample sites been chosen sufficiently using spatial sampling method, and divided sample patches been grouped using clustering method for further uses. The neural network model for road detection trained our dataset subset shows an increased performance on both completeness and accuracy, comparing to two widely used public dataset.</p>


2020 ◽  
Author(s):  
NaKyeong Kim ◽  
Suho Bak ◽  
Minji Jeong ◽  
Hongjoo Yoon

&lt;p&gt;&lt;span&gt;A sea fog is a fog caused by the cooling of the air near the ocean-atmosphere boundary layer when the warm sea surface air moves to a cold sea level. Sea fog affects a variety of aspects, including maritime and coastal transportation, military activities and fishing activities. In particular, it is important to detect sea fog as they can lead to ship accidents due to reduced visibility. Due to the wide range of sea fog events and the lack of constant occurrence, it is generally detected through satellite remote sensing. Because sea fog travels in a short period of time, it uses geostationary satellites with higher time resolution than polar satellites to detect fog. A method for detecting fog by using the difference between 11 &amp;#956;m channel and 3.7 &amp;#956;m channel was widely used when detecting fog by satellite remote sensing, but this is difficult to distinguish between lower clouds and fog. Traditional algorithms are difficult to find accurate thresholds for fog and cloud. However, machine learning algorithms can be used as a useful tool to determine this. In this study, based on geostationary satellite imaging data, a comparative analysis of sea fog detection accuracy was conducted through various methods of machine learning, such as Random Forest, Multi-Layer Perceptron, and Convolutional Neural Networks.&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document