Pituitary adenylate cyclase-activating polypeptide (PACAP) is an upstream regulator of prodynorphin mRNA expression in neurons

2010 ◽  
Vol 484 (3) ◽  
pp. 174-177 ◽  
Author(s):  
Ying Xu Dong ◽  
Mamoru Fukuchi ◽  
Minami Inoue ◽  
Ichiro Takasaki ◽  
Akiko Tabuchi ◽  
...  
Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 5056-5067 ◽  
Author(s):  
Longfei Huo ◽  
Eric K. Y. Lee ◽  
P. C. Leung ◽  
Anderson O. L. Wong

Abstract Calmodulin (CaM) is a Ca2+-binding protein essential for biological functions mediated through Ca2+-dependent mechanisms. In the goldfish, CaM is involved in the signaling events mediating pituitary hormone secretion induced by hypothalamic factors. However, the structural identity of goldfish CaM has not been established, and the neuroendocrine mechanisms regulating CaM gene expression at the pituitary level are still unknown. Here we cloned the goldfish CaM and tested the hypothesis that pituitary expression of CaM transcripts can be the target of modulation by hypothalamic factors. Three goldfish CaM cDNAs, namely CaM-a, CaM-bS, and CaM-bL, were isolated by library screening. These cDNAs carry a 450-bp open reading frame encoding the same 149-amino acid CaM protein, the amino acid sequence of which is identical with that of mammals, birds, and amphibians and is highly homologous (≥90%) to that in invertebrates. In goldfish pituitary cells, activation of cAMP- or PKC-dependent pathways increased CaM mRNA levels, whereas the opposite was true for induction of Ca2+ entry. Basal levels of CaM mRNA was accentuated by GnRH and pituitary adenylate cyclase-activating polypeptide but suppressed by dopaminergic stimulation. Pharmacological studies using D1 and D2 analogs revealed that dopaminergic inhibition of CaM mRNA expression was mediated through pituitary D2 receptors. At the pituitary level, D2 activation was also effective in blocking GnRH- and pituitary adenylate cyclase-activating polypeptide-stimulated CaM mRNA expression. As a whole, the present study has confirmed that the molecular structure of CaM is highly conserved, and its mRNA expression at the pituitary level can be regulated by interactions among hypothalamic factors.


2002 ◽  
Vol 308 (3) ◽  
pp. 347-359 ◽  
Author(s):  
Mirabella N. ◽  
Squillacioti C. ◽  
Colitti M. ◽  
Germano G. ◽  
Pelagalli A. ◽  
...  

2011 ◽  
Vol 301 (6) ◽  
pp. R1625-R1634 ◽  
Author(s):  
Jon M. Resch ◽  
Joanne P. Boisvert ◽  
Allison E. Hourigan ◽  
Christopher R. Mueller ◽  
Sun Shin Yi ◽  
...  

Numerous studies have demonstrated that the hypothalamic ventromedial nuclei (VMN) regulate energy homeostasis by integrating and utilizing behavioral and metabolic mechanisms. The VMN heavily express pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptors (PAC1R). Despite the receptor distribution, most PACAP experiments investigating affects on feeding have focused on intracerebroventricular administration or global knockout mice. To identify the specific contribution of PACAP signaling in the VMN, we injected PACAP directly into the VMN and measured feeding behavior and indices of energy expenditure. Following an acute injection of PACAP, nocturnal food intake was significantly reduced for 6 h after injections without evidence of malaise. In addition, PACAP-induced suppression of feeding also occurred following an overnight fast and could be blocked by a specific PAC1R antagonist. Metabolically, VMN-specific injections of PACAP significantly increased both core body temperature and spontaneous locomotor activity with a concurrent increase in brown adipose uncoupling protein 1 mRNA expression. To determine which signaling pathways were responsive to PACAP administration into the VMN, we measured mRNA expression of well-characterized hypothalamic neuropeptide regulators of feeding. One hour after PACAP administration, expression of pro-opiomelanocortin mRNA was significantly increased in the arcuate nuclei (ARC), with no changes in neuropeptide Y and agouti-related polypeptide mRNA levels. This suggests that PAC1R expressing VMN neurons projecting to pro-opiomelanocortin neurons contribute to hypophagia by involving melanocortin signaling. While the VMN also abundantly express PACAP protein, the present study demonstrates that PACAP input to the VMN can influence the control of energy homeostasis.


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 716-727 ◽  
Author(s):  
George Vlotides ◽  
Kathrin Zitzmann ◽  
Sabine Hengge ◽  
Dieter Engelhardt ◽  
Gunter K. Stalla ◽  
...  

Abstract Novel neurotrophin-1/B cell stimulating factor-3 (NNT-1/BSF-3) is a gp130 cytokine potently stimulating corticotroph proopiomelanocortin gene expression and ACTH secretion by a Janus kinase-signal transducer and activator of transcription (JAK-STAT)-dependent mechanism. In the current study, we examined the regulation of NNT-1/BSF-3 mRNA expression in murine pituitary folliculostellate TtT/GF cells using Northern blot technique. A 5- to 9-fold and a 4- to 7-fold induction in NNT-1/BSF-3 mRNA expression was observed between 2 and 6 h stimulation with the protein kinase C (PKC) stimulus phorbol-12-myristate-13-acetate (100 nm) and the protein kinase A (PKA) stimulus Bu2cAMP (5 mm), respectively. Pituitary adenylate cyclase-activating polypeptide (PACAP-38, 50 nm) and vasoactive intestinal peptide (VIP, 50 nm) also stimulated NNT-1/BSF-3 mRNA expression 5- to 9-fold between 2 and 6 h. Preincubation with PKC and PKA inhibitors such as H-7 (20 μm), GF109203X (50 μm), and H-89 (50 μm) decreased the stimulatory effects of PACAP and VIP. Both PACAP-38 and VIP also rapidly induced ERK1/2 phosphorylation and their stimulatory effect on NNT-1/BSF-3 mRNA expression was reduced by the MAPK kinase/ERK kinase (MEK) inhibitor U0126 (10 μm). Dexamethasone (10−7m) was a potent inhibitor of phorbol-12-myristate-13-acetate-induced NNT-1/BSF-3 expression. RT-PCR analysis demonstrated TtT/GF cells to express the short and the hop variant but not the hip variant of the PACAP-1 receptor (PAC1-R). In addition, TtT/GF cells express the VIP/PACAP-2 receptor (VPAC2-R). In summary, NNT-1/BSF-3 is expressed in pituitary folliculostellate TtT/GF cells and induced by PKC-, PKA-, and ERK1/2-dependent mechanisms. The novel gp130 cytokine NNT-1/BSF-3 derived from folliculostellate cells might act as a paracrine neuroimmunoendocrine modulator of pituitary corticotroph function.


Sign in / Sign up

Export Citation Format

Share Document